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Abstract

The special mixed boundary value problem in which a debonded conducting rigid line inclusion is embedded at the

interface of two piezoelectric half planes is solved analytically by employing the 8-D Stroh formalism. Different from

existing interface insulating crack model and interface conducting rigid line inclusion model, the presently analyzed

model is based on the assumption that all of the physical quantities, i.e., tractions, displacements, normal component of

electric displacements and electric potential, are discontinuous across the interface defect. Explicit solutions for stress

singularities at the tips of debonded conducting rigid line inclusion are obtained. Closed form solutions for the dis-

tribution of tractions on the interface, surface opening displacements and jump in electric potential on the debonded

inclusion are also obtained, in addition real form solutions for these physical quantities are derived. Various forms of

interface defect problems encountered in practice are solved within a unified framework and the stress singularities

induced by those interface defects are discussed in detail. Particularly, we find that the analysis of interface cracks

between the embedded electrode layer and piezoelectric ceramics can also be carried out within the unified frame-

work. � 2002 Published by Elsevier Science Ltd.

Keywords: Piezoelectricity; Mixed boundary value problem; Standard Stroh formalism and its modifications; Explicit solution; Stress

singularity

1. Introduction

The mixed boundary value problems in isotropic and anisotropic elasticity have received many investi-
gators’ attention. Keer (1975) considered the problem of a debonded rigid thin circular disk in a single
isotropic material. Through integral transform, he finally reduced the problem to two decoupled Riemann–
Hilbert problems and obtained closed form expressions for the axial stiffness of the system. Gladwell (1999)
treated the problems of bonded or partially bonded contact of a rigid circular disk between dissimilar iso-
tropic half spaces. Through systematic application of Fourier and Abel transforms, he reduced the problem
to the solution to Riemann–Hilbert problems and also obtained closed form expressions for the axial stiffness
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of the composite system. Muskhelishvili (1953) addressed the straight cut problem in a homogeneous iso-
tropic material. Tractions are prescribed on one side of the cut while displacements are prescribed on the
other side of the cut.Markenscoff andNi (1996) investigated the problem of a debonded rigid line inclusion at
the interface of two dissimilar isotropic half planes. Their method of solution is based on distributing den-
sities of both dislocations and line loads on the cut surface, and they reduced the original problem to coupled
singular integral equations, which were then solved analytically through diagonalization. In their discussions,
they obtained the explicit relationship between stress singularities and the material constants combination.
Ting (1986) studied the stress singularities for crack, inclusion and mixed boundary value problems at the
interface of dissimilar anisotropic (including isotropic) bimaterials by employing the Stroh formalism (6-D).
For crack and inclusion problems, he obtained explicit solutions for the stress singularities; while for the
mixed boundary value problems, he only presented the explicit solutions for isotropic bimaterials. He also
proved that stress singularities for all the three cases are invariant with respect to the orientation of the in-
terface relative to the bimaterials. Also by employing the Stroh formalism (6-D), Homulka and Keer (1995)
solved the problem of debonded rigid line inclusion at the interface of dissimilar anisotropic bimaterials. They
reduced the mixed boundary value problem to coupled Riemann–Hilbert problems and decoupled them to
single Hilbert problem through adopting a clever decoupling method proposed by Clements (1971). In their
analyses, the rigid line inclusion which was termed anchor in their paper, may experience a rotation about the
x3-axis and the angle of rotation is determined through balance of moment on the inclusion.
Piezoelectric problems of cracks and inclusions under mechanical and electrical loads continue to attract

attention of the researchers because of their numerous practical applications. Recent contributions include
the works of Kuo and Barnett (1991), Suo et al. (1992), Chung and Ting (1996), Deng andMeguid (1998), Lu
et al. (1998, 1999, 2000), Ru (2000a,b), among others. Although the interface crack problem (Kuo and
Barnett, 1991; Suo et al., 1992) and interface inclusion problem (Deng and Meguid, 1998) in piezoelectric
bimaterials have been addressed and solved, the mixed boundary value problems at piezoelectric bimaterial
interface have not yet been studied thoroughly. The mixed boundary value problem discussed in the present
work can be interpreted as that a conducting rigid line inclusion is embedded at the interface of dissimilar
piezoelectric half planes, and is debonded due to external thermal–mechanical–electrical loading, so that an
insulating crack is formed on one side of the line inclusion. First, the standard Stroh formalism (8-D) as well
as its modifications is presented, and degenerate cases in which two or more Stroh eigenvalues and their
associated Stroh eigenvectors become equal are also considered, then we consider the special mixed
boundary value problem in which a debonded conducting rigid line inclusion is embedded at the interface of
two piezoelectric half planes and we employ the standard Stroh formalism to obtain an exact solution to the
problem. During the solving process, an explicit solution for stress singularities is obtained and this explicit
solution can be considered as a proper supplement to Ting’s solution (Ting, 1986). The modified Stroh
formalism can be applied to treat other more general mixed boundary value problems, e.g., a conducting
crack is formed on one side of an interface insulating rigid inclusion. Finally we find that various forms of
interface defects can be treated in a unified way and existing models for interface defects can be taken as
special cases discussed in the present paper. Particularly, the analysis of interface cracks between the em-
bedded electrode layer and piezoelectric ceramics can also be carried out within the unified framework.

2. Standard Stroh formalism and its modifications

Basic equations for linear piezoelectric materials are as follows:

rij;j ¼ 0 Di;i ¼ 0
cij ¼ 1

2
ðui;j þ uj;iÞ Ei ¼ �/;i

rij ¼ Cijklckl � ekijEk Dk ¼ ekijcij þ eklEl

ð1Þ
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where uk, /, rij, Di are respectively mechanical displacements, electric potential, stresses and electric dis-
placements; cij and Ei are strain tensor and electric field vector; Cijkl, eijk, eij are respectively elastic moduli
measured in a constant electric field, piezoelectric constants and dielectric constants measured at constant
strain.
For the two-dimensional problem in which the physical quantities only depend on the fixed Cartesian

coordinates x and y, the general solution to the above system of partial differential equations is (Suo et al.,
1992; Chung and Ting, 1996; Deng and Meguid, 1998; Lu et al., 2000)

U ¼ u1 u2 u3 /½ �T ¼ AfðzÞ þ AfðzÞ
U ¼ U1 U2 U3 U4½ �T ¼ BfðzÞ þ BfðzÞ

ð2Þ

where the generalized stress function vector U satisfies the following relationship

ri1 ¼ �Ui;2 ri2 ¼ Ui;1 ði ¼ 1–3Þ
D1 ¼ �U4;2 D2 ¼ U4;1

ð3Þ

A and B are two 4� 4 complex matrices defined as

A ¼ a1 a2 a3 a4½ � B ¼ b1 b2 b3 b4½ � ð4Þ

fðzÞ can be expressed as

fðzÞ ¼ f1ðz1Þ f2ðz2Þ f3ðz3Þ f4ðz4Þ½ �T ð5aÞ

za ¼ xþ pay ða ¼ 1–4Þ ImðpÞ > 0 ð5bÞ

a, b and p satisfy the following eigenvalue problem

N
a

b

� �
¼ p

a

b

� �
ð6Þ

with

N ¼ N1 N2
N3 NT

1

� �
ð7Þ

N1 ¼ �T�1RT ð8Þ

N2 ¼ T�1 ¼ NT
2 ð9Þ

N3 ¼ RT�1RT �Q ¼ NT
3 ð10Þ

Q ¼ Qe e11
eT11 �e11

� �
R ¼ Re e21

eT12 �e12

� �
T ¼ Te e22

eT22 �e22

� �
ð11Þ

and

ðQeÞik ¼ Ci1k1 ðReÞik ¼ Ci1k2 ðTeÞik ¼ Ci2k2 ði; k ¼ 1–3Þ
eij ¼ ei1j ei2j ei3j½ �T ði; j ¼ 1; 2Þ
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Since A and B satisfy the following normalized orthogonality relation

BT AT

B T A T

� �
A A

B B

� �
¼ I ð12Þ

then the following three real 4� 4 matrices S, H and L can be introduced

S ¼ ið2ABT � IÞ; H ¼ 2iAAT ; L ¼ �2iBBT ð13Þ
The above three real matrices will be frequently used in the following analyses. H and L are both symmetric
while SH, LS, H�1S, SL�1 are antisymmetric. Moreover, S, H and L are not entirely independent and are
related by

HL� SS ¼ I ð14Þ
In the above, we have presented the standard Stroh formalism. If one or more corresponding compo-

nents in U and U are exchanged, then the following defined eUU and eUU can be obtainedeUU ¼ eAAfðzÞ þ eAAfðzÞeUU ¼ eBBfðzÞ þ eBBfðzÞ ð15Þ

whereeUU ¼ ðI4�4 � YÞUþ YU; eUU ¼ YUþ ðI4�4 � YÞU ð16aÞ

eAA ¼ ðI4�4 � YÞAþ YB; eBB ¼ YAþ ðI4�4 � YÞB ð16bÞ
If only the first component is exchanged, then

Y ¼ Y1 ¼ diag 1 0 0 0½ � ð17aÞ
If only the second component is exchanged, then

Y ¼ Y2 ¼ diag 0 1 0 0½ � ð17bÞ
If only the third component is exchanged, then

Y ¼ Y3 ¼ diag 0 0 1 0½ � ð17cÞ
If only the fourth component is exchanged, then

Y ¼ Y4 ¼ diag 0 0 0 1½ � ð17dÞ
If the ith and jth components in U are exchanged with the two corresponding components in U, then

Y ¼ Yi þ Yj i 6¼ j ði; j ¼ 1–4Þ ð17eÞ
If the ith, jth and mth components in U are exchanged with the three corresponding components in U,

then

Y ¼ Yi þ Yj þ Ym i 6¼ j 6¼ m ði; j;m ¼ 1–4Þ ð17fÞ
It can be readily proved that eAA and eBB still satisfy the following normalized orthogonality relationshipeBB T eAA TeBB T eAA T

" # eAA eAAeBB eBB
" #

¼ I ð18Þ

then similarly three real matrices eSS, eHH and eLL can be introduced as follows:
eSS ¼ ið2eAAeBBT � IÞ; eHH ¼ 2ieAA eAAT ; eLL ¼ �2ieBBeBBT ð19Þ
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eHH and eLL are both symmetric while eSS eHH, eLLeSS, eHH�1eSS, eSSeLL�1 are antisymmetric. In addition, eSS, eHH and eLL will
satisfy the following relationshipeHHeLL � eSSeSS ¼ I ð20Þ

The above presented modified Stroh formalism will be useful in solving some special mixed boundary value
problems.
The previously obtained standard Stroh formalism and its modifications are based on the assumption

that the eigenvalue problem Eq. (6) possesses four independent eigenvectors ni ¼
ai
bi

� �
ði ¼ 1–4Þ associated

with pi ði ¼ 1–4Þ. Similar to the discussions for purely anisotropic elastic material (see, Ting, 2000 and the
references cited therein), we will endeavor to present general solution P ¼ U

U

� �
for degenerate cases in

which the number of the independent eigenvectors of Eq. (6) is less than four according to the following
four typical classification

• p1 ¼ p2 6¼ p3 6¼ p4 n1 ¼ n2

P ¼ 2Re f1ðz1Þn1
�

þ d

dp1
f2ðz1Þn1½ � þ f3ðz3Þn3 þ f4ðz4Þn4

�
ð21Þ

In this degenerate case, there are only three independent eigenvectors.
• p1 ¼ p2 ¼ p3 6¼ p4 n1 ¼ n2 ¼ n3

P ¼ 2Re f1ðz1Þn1
�

þ d

dp1
f2ðz1Þn1½ � þ d2

dp21
f3ðz1Þn1½ � þ f4ðz4Þn4

�
ð22Þ

In this degenerate case, there are only two independent eigenvectors.
• p1 ¼ p2; p3 ¼ p4 n1 ¼ n2; n3 ¼ n4

P ¼ 2Re f1ðz1Þn1
�

þ d

dp1
f2ðz1Þn1½ � þ f3ðz3Þn3 þ

d

dp3
f4ðz3Þn3½ �

�
ð23Þ

In this degenerate case, there are also only two independent eigenvectors.
• p1 ¼ p2 ¼ p3 ¼ p4 n1 ¼ n2 ¼ n3 ¼ n4

P ¼ 2Re f1ðz1Þn1
�

þ d

dp1
f2ðz1Þn1½ � þ d2

dp21
f3ðz1Þn1½ � þ d3

dp31
f4ðz1Þn1½ �

�
ð24Þ

In this extraordinary degenerate case, there is only one independent eigenvector.
In the above we have not listed all of the possible degenerate cases as done by Ting (2000) for purely

anisotropic materials, but we hasten to add that the form of solution for any other degenerate cases will
belong to that for one of the above four cases.

3. Exact solution

As shown in Fig. 1, an anisotropic piezoelectric medium #1, which occupies the upper half plane z 2 Sþ,
and another anisotropic piezoelectric medium #2, which occupies the lower half plane z 2 S�, form an
interface y ¼ 0. At the portion jxj < a of the interface, there exists a conducting rigid line inclusion whose
upper surface has been fully debonded and there is no traction and free charge on this surface; while the
lower surface of the inclusion is still perfectly bonded to the piezoelectric medium #2; at the rest portion of
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the interface outside the inclusion the two piezoelectric media are still perfectly bonded to each other. The
two-phase piezoelectric composite system is subject to remote uniform electromechanical loading t12 ¼
r1
12 r1

22 r1
32 D1

2½ �T and e11 ¼ c111 c121 2c131 �E1
1½ �T .

Based on the superposition principle for a linear system, then it suffices to consider the disturbance fields
caused by the debonded conducting rigid line inclusion at the interface. In the disturbance fields, the upper
and lower surfaces of the debonded rigid line inclusion should satisfy the following boundary conditions
On the upper side y ¼ 0þ, the following is satisfied

U1;1 ¼ �t12 jxj < a ð25Þ
On the other lower side y ¼ 0�, the following is satisfied

U2;1 ¼ �e11 þ x 0 1 0 0½ �T jxj < a ð26Þ
where in Eq. (26) x denotes rotation angle of the rigid line about the x3-axis.
Since the two piezoelectric media are ideally bonded at the rest of the interface outside the line inclusion,

then we have

U1 ¼ U2

U1 ¼ U2

�
jxj > a ð27Þ

Define the following two jump potential function vectors h1ðzÞ and h2ðzÞ

h1ðzÞ ¼
A1f

0
1ðzÞ � A2f

0
2ðzÞ ImðzÞ > 0

A2f
0
2ðzÞ � A1f

0
1ðzÞ ImðzÞ < 0

8<: ð28aÞ

h2ðzÞ ¼
B1f

0
1ðzÞ � B2f

0
2ðzÞ ImðzÞ > 0

B2f
0
2ðzÞ � B1f

0
1ðzÞ ImðzÞ < 0

8<: ð28bÞ

Noticing the above two defined jump potential function vectors, then the boundary conditions on the
interface y ¼ 0 can be expressed as

U1;1 �U2;1 ¼ hþ1 ðxÞ � h�1 ðxÞ
U1;1 � U2;1 ¼ hþ2 ðxÞ � h�2 ðxÞ

ð29Þ

where the superscript ‘þ’ denotes approaching the interface y ¼ 0 from the upper half plane; similarly, the
superscript ‘�’ indicates approaching the interface y ¼ 0 from the lower half plane.

Fig. 1. An interface conducting inclusion debonded at the upper side.
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From the above equation, it can be found that h1ðzÞ represents jumps in the tangential derivative with
respect to the interface of displacements and electric potential across the interface and when jzj ! 1,
h1ðzÞ ¼ 0ðz�2Þ; while h2ðzÞ represents jumps in tractions and normal component of electric displacements
across the interface and when jzj ! 1, h2ðzÞ ¼ 0ðz�2Þ. The original holomorphic function vectors f 01ðzÞ,
f 02ðzÞ and their analytical continuations f

0
1ðzÞ, f

0
2ðzÞ can be expressed in terms of the two newly defined

function vectors h1ðzÞ and h2ðzÞ as follows:

f 01ðzÞ
f
0
2ðzÞ

" #
¼

iB�1
1 M

�1
� B�1

1 M1M
��1

�A�1
2 M

��1M1 �iA�1
2 M

��1

" #
h1ðzÞ
h2ðzÞ

� �
ImðzÞ > 0 ð30aÞ

f
0
1ðzÞ
f 02ðzÞ

" #
¼ iB

�1
1 M

�1
� �B�1

1 M1M
��1

A�1
2 M

��1
M1 �iA�1

2 M
��1

" #
h1ðzÞ
h2ðzÞ

� �
ImðzÞ < 0 ð30bÞ

where

Mk ¼ �iBkA
�1
k ¼ H�1

k ðIþ iSkÞ ¼ LkðI� iSkÞ�1 ðk ¼ 1; 2Þ ð31aÞ

M� ¼M1 þM2 ¼ H�1
1 þH�1

2 þ iðH�1
1 S1 �H�1

2 S2Þ ð31bÞ

M� ¼M�1
1 þM�1

2 ¼ L�1
1 þ L�1

2 þ iðS2L�1
2 � S1L�1

1 Þ ð31cÞ
M1 and M2 are called the impedance matrices (Suo et al., 1992) and are two Hermitian matrices; M

� and
M� are also two Hermitian matrices.
At the ideally bonded portion (jxj > a) of the interface, Eq. (27) shall be satisfied and can be expressed as

follows:

hþðxÞ � h�ðxÞ ¼ 0 jxj > a ð32Þ
where

hðzÞ ¼ h1ðzÞ
h2ðzÞ

� �
ð33Þ

and when jzj ! 1, hðzÞ ¼ 0ðz�2Þ.
On the debonded interface conducting rigid line inclusion (jxj < a), Eqs. (25) and (26) shall be satisfied

and can be expressed in terms of hðzÞ as follows:

G�1hþðxÞ þG�1
h�ðxÞ ¼ g jxj < a ð34Þ

where in the above equation

G�1 ¼ M�1
� �iM1M

��1

iM��1M1 �M��1

� �
ð35aÞ

G ¼ M�1
1 �iI4�4

iI4�4 �M2

� �
¼ L�1

1 0

0 �H�1
2

� �
þ i �S1L�1

1 �I
I H�1

2 S2

� �
ð35bÞ

g ¼ i t12
e11

� ��
� xq

�
ð35cÞ

and

q ¼ 0 0 0 0 0 1 0 0½ �T ð35dÞ
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From the above two definitions Eqs. (35a) and (35b), it is apparent that G and G�1 are both 8� 8 Her-
mitian matrices. Eqs. (32) and (34) constitute mutually coupled Riemann–Hilbert problem of vector form
(8-D) with discontinuous coefficients. Then the coupled Hilbert problem shall be decoupled through in-
troduction of coordinate transformation. In view of Eq. (34), we consider the following eigenvalue problem

ðG�1 þ e2pidG�1Þv ¼ 0 ð36Þ
Substituting specific expression for G (Eqs. (35a)–(35d)) into the above equation and for a non-trivial

solution of v, we have

Wk þ ibDk ¼ 0 ð37Þ

where

D ¼ L�1
1 0

0 �H�1
2

� �
ð38aÞ

W ¼ S1L
�1
1 I

�I �H�1
2 S2

� �
ð38bÞ

b ¼ 1þ e
2pid

1� e2pid ð38cÞ

and

D ¼ DT ; W ¼ �WT ð39Þ

Eq. (37) can be further simplified to be

Fk þ ibIk ¼ 0 ð40Þ
where

F ¼ �ST
1 L1

H2 S2

� �
ð41Þ

It can be readily checked that Eq. (40) is equivalent to the following equation

ðS2S1
��� �H2L1Þ þ ibðS1 þ S2Þ þ ðibÞ2I

��� ¼ 0 ð42Þ

When the two media are both purely anisotropic elastic materials, the above equation is identical to
Ting’s result (Ting, 1986). The advantage of adopting Eq. (40) in stead of Eq. (42) will be shown in the
following analysis. Noting thatW is real and antisymmetric while D is real and symmetric, then expanding
the determinant Eq. (37) or (40) will result in the following octonary algebraic equation in b

b8 � c6b
6 þ c4b

4 � c2b
2 þ c0 ¼ 0 ð43Þ

where

c6 ¼ �1
2
trðF2Þ ¼ �1

2
trðS21 þ S

2
2 þ 2H2L1Þ

c4 ¼ �1
8
trðF4Þ
n

þ Fk ktrðF�4Þ � 1
2
trðF2Þ

 �2 � 1

2
Fk k trðF�2Þ

 �2o

c2 ¼ �1
2
Fk ktrðF�2Þ

c0 ¼ Fk k ¼ H2L1k � S2S1k

ð44Þ
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During the above derivation for c4, Hamilton–Caylay theorem (Wang and Shi, 1988) has been utilized.
Apparently the octonary algebraic equation (43) in b can reduce to a quartic algebraic equation in b2, and
the resulting quartic equation can be solved analytically using standard method to obtain the four roots b2

and consequently all the eight roots b of Eq. (43). The concrete solution procedure for the quartic equation
is still cumbersome and can be found in a common mathematical manual and will not be shown here. It
shall be pointed out that although Ting (1986) derived Eq. (42), he only obtained the explicit solution for
the case when both the two materials are isotropic; while in the work of Homulka and Keer (1995), the six
eigenvalues of the eigenvalue problem also must be obtained numerically. Noting that c0 > 0, then the
stress singularities at the tips of the debonded conducting rigid line inclusion can be categorized as follows
based on the nature of the eight roots b of Eq. (43).

• category 1: Eq. (43) has eight real roots, then

d1;2 ¼ �1
2
� ie1; d3;4 ¼ �1

2
� ie2; d5;6 ¼ �1

2
� ie3; d7;8 ¼ �1

2
� ie4 ð45aÞ

and the corresponding eight independent eigenvectors of Eq. (36) comprise the following form of modal
matrix

P ¼ v1 v1 v3 v3 v5 v5 v7 v7½ � ð45bÞ
• category 2: Eq. (43) has four real roots and four purely imaginary roots, then

d1;2 ¼ �1
2
� ie1; d3;4 ¼ �1

2
� ie2; d5;6 ¼ �1

2
� k1; d7;8 ¼ �1

2
� k2 ð46aÞ

and the corresponding eight independent eigenvectors of Eq. (36) comprise the following form of modal
matrix

P ¼ v1 v1 v3 v3 v5 v6 v7 v8½ � ð46bÞ
In addition, v5, v6, v7, v8 are real vectors

• category 3: Eq. (43) has four real roots and four complex roots, then

d1;2 ¼ �1
2
� ie1; d3;4 ¼ �1

2
� ie2; d5;6 ¼ �1

2
� h1 þ ic1; d7;8 ¼ �1

2
� h1 � ic1 ð47aÞ

and the corresponding eight independent eigenvectors of Eq. (36) comprise the following form of modal
matrix

P ¼ v1 v1 v3 v3 v5 v6 v5 v6½ � ð47bÞ
• category 4: Eq. (43) has eight purely imaginary roots, then

d1;2 ¼ �1
2
� k1; d3;4 ¼ �1

2
� k2; d5;6 ¼ �1

2
� k3; d7;8 ¼ �1

2
� k4 ð48aÞ

and the corresponding eight independent eigenvectors of Eq. (36) comprise the following form of modal
matrix

P ¼ v1 v2 v3 v4 v5 v6 v7 v8½ � ð48bÞ
In addition, v1, v2, v3, v4, v5, v6, v7, v8 are all real vectors

• category 5: Eq. (43) has four purely imaginary roots and four complex roots, then

d1;2 ¼ �1
2
� k1; d3;4 ¼ �1

2
� k2; d5;6 ¼ �1

2
� h1 þ ic1; d7;8 ¼ �1

2
� h1 � ic1 ð49aÞ

and the corresponding eight independent eigenvectors of Eq. (36) comprise the following form of modal
matrix

P ¼ v1 v2 v3 v4 v5 v6 v5 v6½ � ð49bÞ
In addition, v1, v2, v3, v4 are real vectors
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• category 6: Eq. (43) has eight complex roots, then

d1;2 ¼ �1
2
� h1 þ ic1; d3;4 ¼ �1

2
� h1 � ic1; d5;6 ¼ �1

2
� h2 þ ic2; d7;8 ¼ �1

2
� h2 � ic2 ð50aÞ

and the corresponding eight independent eigenvectors of Eq. (36) comprise the following form of modal
matrix

P ¼ v1 v2 v1 v2 v5 v6 v5 v6½ � ð50bÞ

Noticing that ei, ki, hi, ci appearing in Eqs. (45a)–(50b) are all real quantities and depend on the electro-
elastic properties of the bimaterials. When the special degenerate case, in which d is a double root and there
exists only one independent eigenvector associated with d, is encountered, we may have additional stress
singularities of the form rd ln r as those encountered in isotropic bimaterials (Ting, 1986; Markenscoff and
Ni, 1996).
It should be pointed out here that in the above we list all possible interface stress singularities, some

categories for the stress singularities may not exist in real physical world due to certain restrictions on
constitutive constants. Noticing G�1 is Hermitian and the above categorization for interface stress singu-
larities, then the following orthogonal relationship with respect to G�1 and G

�1
can be obtained

JPHG�1P ¼ K1 JPHG
�1
P ¼ �K1K ð51Þ

where in the above expression the superscript ‘H’ means conjugate and transpose of a matrix, K1 is a 8� 8
diagonal matrix, K ¼ hhe2pidbii with b taken from 1 to 8.
For category 1 stress singularities

J ¼ I8�8 ð52aÞ
For category 2 and 3 stress singularities

J ¼ I4�4 04�4
04�4 J1

� �
ð52bÞ

For categories 4–6 stress singularities

J ¼ J1 04�4
04�4 J1

� �
ð52cÞ

where in Eqs. (52b) and (52c)

J1 ¼

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

2664
3775 ð53Þ

Introduce the following transformation

hðzÞ ¼ PĥhðzÞ ĝg ¼ K�1
1 JP

Hg ð54Þ

and premultiply Eq. (34) by JPH , then the following decoupled Riemann–Hilbert problem can be obtained

ĥhþðxÞ � Kĥh�ðxÞ ¼ ĝg jxj < a
ĥhþðxÞ � ĥh�ðxÞ ¼ 0 jxj > a

(
ð55Þ

Here it should be pointed out that since the Hermitian property of G�1 is fully exploited, then inversion of
the modal matrix P can be circumvented during the above decoupling procedure. The decoupling procedure
presented here is different from that adopted by Suo et al. (1992), Markenscoff and Ni (1996), Deng and
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Meguid (1998) and shall be more elegant and transparent than their approach. In the investigation of
Homulka and Keer (1995), they must also utilize inversion of the modal matrix during their solution
procedure.
From Eq. (55) and by noticing that when z ! 1 ĥhðzÞ ¼ 0ðz�2Þ, then explicit expression for the holo-

morphic function vector ĥhðzÞ can be obtained as follows (Muskhelishvili, 1953)

ĥhðzÞ ¼ I
�

� XðzÞhhzþ ð1þ 2dbÞaii
�
ðI� KÞ�1K�1

1 JP
Hg ð56Þ

where

XðzÞ ¼ hhðzþ aÞ�ð1þdbÞðz� aÞdbii ð57Þ

The explicit expression for the holomorphic function vector hðzÞ can be obtained from Eqs. (54) and (56) as
follows:

hðzÞ ¼ P I
�

� XðzÞhhzþ ð1þ 2dbÞaii
�
ðI� KÞ�1K�1

1 JP
Hg ð58Þ

The above obtained holomorphic function vector hðzÞ has satisfied equilibrium condition of force and
charge on the line inclusion as well as the single-valuedness condition of displacements and electric po-
tential surrounding the crack. In the expressions for ĥhðzÞ and hðzÞ, there still contains an unknown real
constant x (rotation angle of the rigid inclusion) and the unknown can be determined by the following
condition that the moment of forces acting on the inclusion vanishes.Z a

�a
xrð2Þ

22 ðx; 0�Þdx ¼ 0 ð59Þ

Or can be expressed by ĥhðzÞ as the following contour integral surrounding the two faces of the line inclusion

qTP

I
ĥhðzÞzdz ¼ 0 ð60Þ

Applying the residue theorem (Zhuang and Zhang, 1984), rotation angle x of the inclusion about the x3-
axis can be determined to be

x ¼ n1
n2

ð61Þ

where

n1 ¼ qTPhhdbð1þ dbÞiiðI� KÞ�1K�1
1 JP

H t12
e11

� �
ð62aÞ

n2 ¼ qTPhhdbð1þ dbÞiiðI� KÞ�1K�1
1 JP

Hq ð62bÞ

It can be observed from the above expression for x that even the two-phase composite system is only
subject to remote uniform tension r1

22, the line inclusion will in general experience rotation about the x3-axis
due to anisotropic effect of the bimaterials; while for isotropic bimaterials, only remote uniform shear
loading r1

12 can make the inclusion rotate about the x3-axis (Markenscoff and Ni, 1996). Up to now, the
holomorphic function vector hðzÞ has been completely determined. f 01ðzÞ, f

0
2ðzÞ as well as their analytical

continuations f
0
1ðzÞ, f

0
2ðzÞ can be obtained from Eqs. (30a) and (30b) as follows:

f 01ðzÞ
f
0
2ðzÞ

" #
¼ CG�1P I

�
� XðzÞhhzþ ð1þ 2dbÞaii

�
ðI� KÞ�1K�1

1 JP
Hg ImðzÞ > 0 ð63aÞ
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f
0
1ðzÞ
f 02ðzÞ

" #
¼ �CG�1

P I
�

� XðzÞhhzþ ð1þ 2dbÞaii
�
ðI� KÞ�1K�1

1 JP
Hg ImðzÞ < 0 ð63bÞ

with

C ¼ i B
�1
1 0

0 A
�1
2

" #
ð64Þ

Employing a translating technique, the explicit full field expressions for f 01ðzÞ, f
0
2ðz�Þ and their analytical

continuations f
0
1ðzÞ, f

0
2ðz�Þ can be obtained as

f 01ðzÞ
f
0
2ðz�Þ

" #
¼ CG�1PðI� KÞ�1K�1

1 JP
Hg�

X8
k¼1

hhzbXkðzbÞiiCG�1PIkðI� KÞ�1K�1
1 JP

Hg

�
X8
k¼1

hhXkðzbÞiiCG�1PIkhhð1þ 2dbÞaiiðI� KÞ�1K�1
1 JP

Hg y > 0 ð65Þ

f
0
1ðzÞ
f 02ðz�Þ

" #
¼ �CG�1

PðI� KÞ�1K�1
1 JP

Hgþ
X8
k¼1

hhzbXkðzbÞiiCG
�1
PIkðI� KÞ�1K�1

1 JP
Hg

þ
X8
k¼1

hhXkðzbÞiiCG
�1
PIkhhð1þ 2dbÞaiiðI� KÞ�1K�1

1 JP
Hg y < 0 ð66Þ

where in Eqs. (65) and (66)

I1 ¼ diag 1 0 0 0 0 0 0 0½ � I2 ¼ diag 0 1 0 0 0 0 0 0½ �
I3 ¼ diag 0 0 1 0 0 0 0 0½ � I4 ¼ diag 0 0 0 1 0 0 0 0½ �
I5 ¼ diag 0 0 0 0 1 0 0 0½ � I6 ¼ diag 0 0 0 0 0 1 0 0½ �
I7 ¼ diag 0 0 0 0 0 0 1 0½ � I8 ¼ diag 0 0 0 0 0 0 0 1½ �

ð67Þ

XkðzÞ denotes the kth diagonal component function of XðzÞ and the superscript ‘�’ is utilized to distinguish
the Stroh eigenvalues pertaining to the lower piezoelectric half plane with those pertaining to the upper
piezoelectric half plane.
Before ending this section, we point out that as for the mixed boundary value problem in which a

conducting crack is formed on one side of an interface insulating rigid line inclusion, the modified Stroh
formalism presented in Section 2 with Y defined by Eq. (17d) should be adopted while the solution pro-
cedure carried out in this section keeps unchanged. In solving interface conducting crack and interface
insulating inclusion problems, this kind of modified Stroh formalism should better be employed to obtain
real form solutions.

4. Expressions for physical quantities

The stress fields, strain fields and electric fields at the ideally bonded part of the interface are distributed
as follows:

w;1 ¼ 2iRe G�1� �
P I
�

� XðxÞhhxþ ð1þ 2dbÞaii
�
ðI� KÞ�1K�1

1 JP
Hg xj j > a ð68Þ

where

w ¼ U
U

� �
ð69Þ

1602 Xu Wang, Y.-p. Shen / International Journal of Solids and Structures 39 (2002) 1591–1619



Notice the physical meaning of hðzÞ, then the following densities of dislocations and electric potential
dislocations b̂b as well as line loads and line charges f̂f are continuously distributed on the line inclusion
xj j < a

b̂b

f̂f

� �
¼ �PXþðxÞhhxþ ð1þ 2dbÞaiiðK1KÞ�1JPHg xj j < a ð70Þ

Integrating the above equation will yield the following closed form expression for jump in generalized
displacement vector DU ¼ U1 �U2 and jump in generalized stress function vector DU ¼ U1 � U2 on the
debonded inclusion jxj < a

DU
DU

� �
¼ ðx2 � a2ÞPXþðxÞðK1KÞ�1JPHg xj j < a ð71Þ

It is seen from Eq. (68) that stress fields, strain fields and electric fields are all singular at the two tips x ¼ �a
of the debonded line inclusion. We can categorize the singular distributions of stress fields, strain fields and
electric fields as well as the generalized field intensity factor vector eKK as follows:
• category 1 stress singularities

w;1ðrÞ ¼ ð2prÞ�1=2Re G�1� �
Re v1rie1 eKK1n

þ v3rie2 eKK3 þ v5rie3 eKK5 þ v7rie4 eKK7o ð72aÞ

eKK ¼ eKK1 eKK 1
eKK3 eKK 3

eKK5 eKK 5
eKK7 eKK 7

h iT
ð72bÞ

• category 2 stress singularities

w;1ðrÞ ¼ ð2prÞ�1=2Re G�1� �
Re v1rie1 eKK1nn

þ v3rie2 eKK3oþ v5rk1 eKK5 þ v6r�k1 eKK6 þ v7rk2 eKK7 þ v8r�k2 eKK8o
ð73aÞ

eKK ¼ eKK1 eKK 1
eKK3 eKK 3

eKK5 eKK6 eKK7 eKK8h iT
ð73bÞ

In addition, eKK5, eKK6, eKK7, eKK8 are real quantities
• category 3 stress singularities

w;1ðrÞ ¼ ð2prÞ�1=2Re G�1� �
Re v1rie1 eKK1n

þ v3rie2 eKK3 þ v5rh1þic1 eKK5 þ v6r�h1þic1 eKK6o ð74aÞ

eKK ¼ eKK1 eKK 1
eKK3 eKK 3

eKK5 eKK6 eKK 5
eKK 6

h iT
ð74bÞ

• category 4 stress singularities

w;1ðrÞ ¼ ð2prÞ�1=2Re G�1� �
v1rk1 eKK1n

þ v2r�k1 eKK2 þ v3rk2 eKK3 þ v4r�k2 eKK4 þ v5rk3 eKK5 þ v6r�k3 eKK6
þ v7rk4 eKK7 þ v8r�k4 eKK8o ð75aÞ

eKK ¼ eKK1 eKK2 eKK3 eKK4 eKK5 eKK6 eKK7 eKK8
 �T ð75bÞ

In addition, eKK1, eKK2, eKK3, eKK4, eKK5, eKK6, eKK7, eKK8 are all real quantities
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• category 5 stress singularities

w;1ðrÞ ¼ ð2prÞ�1=2Re G�1� �
v1rk1 eKK1n

þ v2r�k1 eKK2 þ v3rk2 eKK3 þ v4r�k2 eKK4
þRe v5rh1þic1 eKK5n

þ v6r�h1þic1 eKK6oo ð76aÞ

eKK ¼ eKK1 eKK2 eKK3 eKK4 eKK5 eKK6 eKK 5
eKK 6

h iT
ð76bÞ

In addition, eKK1, eKK2, eKK3, eKK4 are real quantities
• category 6 stress singularities

w;1ðrÞ ¼ ð2prÞ�1=2Re G�1� �
Re v1rh1þic1 eKK1n

þ v2r�h1þic1 eKK2 þ v5rh2þic2 eKK5 þ v6r�h2þic2 eKK6o ð77aÞ

eKK ¼ eKK1 eKK2 eKK 1
eKK 2

eKK5 eKK6 eKK 5
eKK 6

h iT
ð77bÞ

The above analysis shows that different from the interface crack and interface inclusion (anti-crack) in

which four parameters are sufficient to describe the singular fields, eight parameters eKK ¼eKK1 eKK2 eKK3 eKK4 eKK5 eKK6 eKK7 eKK8
 �T
must be employed for a debonded inclusion to describe the sin-

gular distribution of stress fields, strain fields and electric fields near the tips of the debonded inclusion.

5. Real form solutions for important physical quantities

The expressions for rotation of the rigid line inclusion (Eqs. (61), (62a) and (62b)), distribution of stress
fields, strain fields and electric fields on the interface (Eqs. (68) and (70)), jumps in displacements and
electric potential (Eq. (71)) obtained in the previously two sections need the knowledge of modal matrix P,
which must be obtained through solving the eigenvalue problem Eq. (36). In this section, we will present
real form solutions for these important physical quantities. The modal matrix P will be absent in the real
form solutions and consequently the solving of eigenvalue problem Eq. (36) can be circumvented.
Noticing that the modal matrix P satisfies the orthogonality relationship Eq. (51), then the following

identities can be readily proved

PK0K�1
1 JP

H ¼ G PK�1K�1
1 JP

H ¼ �G
PK1K�1

1 JP
H ¼ �GG�1

G PK�2K�1
1 JP

H ¼ GG�1G

PK2K�1
1 JP

H ¼ ðGG�1Þ2G PK�3K�1
1 JP

H ¼ �ðGG�1Þ2G
PK3K�1

1 JP
H ¼ �ðGG�1Þ3G PK�4K�1

1 JP
H ¼ ðGG�1Þ3G

ð78Þ

where in the above identities, the terms on the right-hand side only contain matrices G and G�1 which have
been defined by Eqs. (35a) and (35b). On the other hand, if we treat the eight 8� 8 diagonal matrices K�4,
K�3, K�2, K�1, K0, K1, K2, K3 as a set of independent bases, then the 8� 8 diagonal matrices Im
ðm ¼ 1; 2; . . . ; 8Þ defined by Eq. (67) can be uniquely expressed in terms of the set of independent bases K�4,
K�3, K�2, K�1, K0, K1, K2, K3 as follows:

Im ¼
X8
n¼1

cmnK
ðn�5Þ ðm ¼ 1; 2; . . . ; 8Þ ð79Þ

consequently for any 8� 8 diagonal matrix D0 ¼ hhdbii, the following identity can be derived
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PD0K
�1
1 JP

H ¼
X8
m¼1

dmPImK�1
1 JP

H ¼
X8
n¼1

X8
m¼1

dmcmn

 !
PKðn�5ÞK�1

1 JP
H

¼ e1ðGG�1Þ3
h

� e2ðGG�1Þ2 þ e3GG
�1 � e4I

i
G

þ e5I
h

� e6GG
�1 þ e7ðGG

�1Þ2 � e8ðGG
�1Þ3

i
G ð80Þ

where

en ¼
X8
m¼1

dmcmn ðn ¼ 1; 2; . . . ; 8Þ ð81Þ

The modal matrix P does not appear in the most right-hand side of identity Eq. (80). Employing Eq.
(80), then expressions for rotation of the rigid line inclusion (Eqs. (61), (62a) and (62b)), distribution of
stress fields, strain fields and electric fields on the interface (Eqs. (68) and (70)), jumps in displacements and
electric potential (Eq. (71)) will also not contain the modal matrix P. Real form solutions for these physical
quantities are then obtained.

6. Unification of various interface defects

In this section, we will treat various forms of interface defects within a unified framework. Since the fact
that some physical quantities are continuous across these defects, then the component functions in hðzÞ
associated with these continuous physical quantities will be zero. As a result, hðzÞ can be expressed as
follows:

hðzÞ ¼ EehhðzÞ ð82Þ

where the real matrix E will be determined by various specific interface defects and ehhðzÞ satisfies the
following Hilbert problem

eGG�1ehhþðxÞ þ eGG�1ehh�ðxÞ ¼ egg xj j < aehhþðxÞ � ehh�ðxÞ ¼ 0 xj j > a

(
ð83Þ

whereeGG�1 ¼ ETG�1E; egg ¼ ETg ð84Þ

Apparently eGG�1 is also Hermitian, but its dimension will be lower than that of G�1. In view of Eq. (83), the
stress singularities for the interface defect shall satisfy the following eigenvalue problem

ðeGG�1
þ e2pid eGG�1Þevv ¼ 0 ð85Þ

In the following we will discuss various possible forms of interface defects. First the following eight
vectors are defined

m1 ¼ 1 0 0 0 0 0 0 0½ �T m2 ¼ 0 1 0 0 0 0 0 0½ �T
m3 ¼ 0 0 1 0 0 0 0 0½ �T m4 ¼ 0 0 0 1 0 0 0 0½ �T
m5 ¼ 0 0 0 0 1 0 0 0½ �T m6 ¼ 0 0 0 0 0 1 0 0½ �T
m7 ¼ 1 0 0 0 0 0 1 0½ �T m8 ¼ 0 0 0 0 0 0 0 1½ �T

ð86Þ
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• ½�a; a� is a conducting inclusion, and the upper debonded side is also conducting

E ¼ m1 m2 m3 m5 m6 m7 m8½ � ð87Þ

In this case eGG�1 is a 7� 7 Hermitian matrix, and there are seven stress singularities, one of which is
�1=2.

• ½�a; a� is an insulating inclusion, and the upper debonded part is also insulating

E ¼ m1 m2 m3 m4 m5 m6 m7½ � ð88Þ

In this case eGG�1 is a 7� 7 Hermitian matrix, and there are seven stress singularities, one of which is
�1=2.

• ½�a; a� is a conducting inclusion, and the upper debonded conducting part is in smooth contact with the
inclusion

E ¼ m1 m3 m5 m6 m7 m8½ � ð89Þ

In this case eGG�1 is a 6� 6 Hermitian matrix, and there are six stress singularities.
• ½�a; a� is an insulating inclusion, and the upper debonded insulating part is in smooth contact with the
inclusion

E ¼ m1 m3 m4 m5 m6 m7½ � ð90Þ

In this case eGG�1 is a 6� 6 Hermitian matrix, and there are six stress singularities.
• ½�a; a� is a traction-free crack, and its upper surface is insulating while its lower surface is conducting

E ¼ m1 m2 m3 m4 m8½ � ð91Þ

In this case eGG�1 is a 5� 5 Hermitian matrix, and there are five stress singularities, one of which is �1=2.
This model can be applied to analyze an interface crack with its two tips just lodged at the embedded
compliant electrode edges. Recently, Ru et al. (1998) have examined interfacial cracking in electrostrictive
multilayer systems. Similar issues for piezoelectric multilayer materials remain to be investigated. We notice
that most recently, Ru (2000a) studied interface cracks between the embedded electrode layer and piezo-
electric ceramic. In his research, the compliant electrode layer is assumed to be embedded at the entire
interface. He stated that the resulting non-trivial mixed boundary value problem does not admit a general
closed-form solution, and he only obtained an exact elementary solution for a special case in which the two
piezoelectric half-planes are poled in opposite directions perpendicular to the electrode layer. Contrary to
his statement, we can still obtain a general closed-form solution for this mixed boundary value problem. We
can write the resulting 5� 5 Hermitian matrix eGG�1 defined by Eq. (91) and the 5� 1 jump function vectorehhðzÞ into the following partitioned form

eGG�1 ¼ Y11 Y12
YH
12 Y22

� � ehhðzÞ ¼ XðzÞ
gðzÞ

� �
ð92Þ

where Y11 is a 4� 4 Hermitian matrix, Y12 is a 4� 1 vector, Y22 is a real quantity scalar, XðzÞ is a 4� 1
function vector. Then the boundary conditions on the interface crack can be expressed as follows

Y11 Y12

YH
12 Y22

� �
XþðxÞ
gþðxÞ

� �
þ Y11 Y12

YH
12 Y22

" #
X�ðxÞ
g�ðxÞ

� �
¼ i t

1
2

0

� �
xj j < a ð93Þ

Here the last row in the above equation expresses the conditions Eð2Þ
1 ¼ 0 on the defect. Due to the fact

that Eð2Þ
1 ¼ 0 establishes along the lower side of the entire real axis, then it follows from Eq. (93) that
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gðzÞ ¼
� YH

12

Y22
XðzÞ ImðzÞ > 0

� YT
12

Y22
XðzÞ ImðzÞ < 0

8<: ð94Þ

A substitution of Eq. (94) into Eq. (93) will result in a standard Hilbert condition for XðzÞ on the interval
xj j < a as follows:

eGG�1
� XþðxÞ þ eGG�1

� X�ðxÞ ¼ it12 jxj < a ð95Þ

here the 4� 4 Hermitian matrix eGG�1
� is defined by

eGG�1
� ¼ Y11 �

Y12Y
H
12

Y22
ð96Þ

• ½�a; a� is an insulating crack

E ¼ m1 m2 m3 m4½ � ð97Þ

In this case eGG�1 ¼M�1
� is a 4� 4 Hermitian matrix. There are four stress singularities, and the resulting

singularities are identical to the results obtained by Kuo and Barnett (1991), Suo et al. (1992).
• ½�a; a� is a conducting crack

E ¼ m1 m2 m3 m8½ � ð98Þ

In this case eGG�1 is a 4� 4 Hermitian matrix, and there are four stress singularities.
• ½�a; a� is an ideally bonded conducting inclusion

E ¼ m5 m6 m7 m8½ � ð99Þ

In this case eGG�1 ¼ �M��1 is a 4� 4 Hermitian matrix. There are four stress singularities, and the
resulting singularities are identical to the results obtained by Deng and Meguid (1998).

• ½�a; a� is an ideally bonded insulating inclusion
E ¼ m4 m5 m6 m7½ � ð100Þ

In this case eGG�1 is a 4� 4 Hermitian matrix, and there are four stress singularities.
• ½�a; a� is a permeable crack

E ¼ m1 m2 m3½ � ð101Þ

In this case eGG�1 is a 3� 3 Hermitian matrix, and there are three stress singularities, one of which is �1=2.
• ½�a; a� is a closed crack with its two surfaces in smooth contact with each other

E ¼ m1 m3½ � ð102Þ

In this case eGG�1 is a 2� 2 Hermitian matrix, and there are two stress singularities. When the in-plane
deformations and out-of-plane deformations are decoupled, then eGG�1 will be a 2� 2 diagonal real
matrix and as a result both the two stress singularities will be �1=2.

• ½�a; a� is a compliant metal electrode layer (Ru, 2000b)
E ¼ m8 ð103Þ

In this case eGG�1 is the fourth diagonal element of the 4� 4 Hermitian matrix �M��1 and in addition
shall be a real scalar, then there is only one stress singularity �1=2. In the analysis performed by Ru
(2000b), he did not point out explicitly that the singularity should be �1=2 for general piezoelectric
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bimaterials since (may be) he did not notice the Hermitian property of M��1. He only pointed out the
�1=2 singularity in the discussion for two special cases.

We can conceive many other interface boundary condition combinations and they will not be listed here
for brevity. If the modified Stroh formalism is employed, then more boundary conditions can be arrived at.
In summary, the above analysis demonstrates that stress singularities for various forms of interface defects
discussed in this section can be obtained from various condensed matrices eGG�1 (or eGG�1

� ) of G
�1 (from 7� 7

matrix to a real scalar). After the stress singularity d and its corresponding eigenvector evv are determined,
then the Hilbert problem Eq. (83) can be solved using the methodology presented in Section 3 and con-
sequently analytical solutions for these defects can be obtained.

7. The influence of material orientation

In this section’s discussions, we will assume that both the two piezoelectric materials are rotated in
counterclock direction by a common angle h about the x3-axis. First, we define the following orthogonal
transformation matrix X (XXT ¼ I)

X ¼ W 0

0 W

� �
ð104aÞ

W ¼

cos h sin h 0 0
� sin h cos h 0 0
0 0 1 0
0 0 0 1

2664
3775 ð104bÞ

In the new coordinate system the following relationships will hold

A� ¼ WA; B� ¼ WB ð105aÞ

S� ¼ WSWT ; H� ¼ WHWT ; L� ¼ WLWT ð105bÞ

G��1 ¼ XG�1XT ; G� ¼ XGXT ð105cÞ
Observing the eigenvalue problem Eq. (36), it can be readily proved that stress singularity d will be

invariant in the new coordinate system, a conclusion having been similarly drawn for purely anisotropic
elastic bimaterials by Ting (1986); while the modal matrix will change in the following way

P� ¼ XP ð106Þ
In the new coordinate system, the orthogonal relationship Eq. (51) still holds in view of Eqs. (105c) and

(106), while in the new coordinate system the rotation angle x� of the line inclusion about the x3-axis can be
expressed as follows:

x� ¼ n�1
n�2

ð107Þ

where

n�1 ¼ qTXPhhdbð1þ dbÞiiðI� KÞ�1K�1
1 JP

HXT t12
e11

� �
ð108aÞ

n�2 ¼ qTXPhhdbð1þ dbÞiiðI� KÞ�1K�1
1 JP

HXTq ð108bÞ
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In the new coordinate system, the stress fields, strain fields and electric fields on the ideally bonded part
of the interface are distributed as follows:

w�
;1 ¼ 2iXRe G

�1� �
P I
�

� XðxÞhhxþ ð1þ 2dbÞaii
�
ðI� KÞ�1K�1

1 JP
HXTg� xj j > a ð109Þ

where g� is similarly defined by Eq. (35c) with x replaced by x�.
In the new coordinate system, the following densities of dislocations and electric potential dislocations b̂b�

as well as line loads and line charges f̂f� are continuously distributed on the line inclusion xj j < a

b̂b�

f̂f�

� �
¼ �XPXþðxÞhhxþ ð1þ 2dbÞaiiðK1KÞ�1JPHXTg� xj j < a ð110Þ

In the new coordinate system, closed form expression for jump in generalized displacement vector
DU� ¼ U�

1 �U�
2 and jump in generalized stress function vector DU� ¼ U�

1 � U�
2 on xj j < a can be obtained

as

DU�

DU�

� �
¼ ðx2 � a2ÞXPXþðxÞðK1KÞ�1JPHXTg� xj j < a ð111Þ

As for the various interface defects discussed in Section 6, we find that the stress singularities for three
cases will change under rotation about the x3-axis. Namely,

1. ½�a; a� is a conducting inclusion, and the upper debonded conducting part is in smooth contact with the
line inclusion;

2. ½�a; a� is an insulating inclusion, and the upper debonded insulating part is in smooth contact with the
line inclusion;

3. ½�a; a� is a closed crack with its two surfaces in smooth contact with each other.

The stress singularities for the rest of the cases will be invariant under rotation of coordinate system
about the x3-axis. Apparently, when the two materials are rotated by different angles, the stress singularities
for all of the interface defects will change.

8. Results and discussions

In this section several illustrative numerical examples will be presented to portray the theoretical results
obtained in the previously several sections. During the calculations, we utilize material combinations of
PZT-4, PZT-5H, Zn and SiC, of which the constitutive constants are listed in Table 1. Among the four
materials, PZT-4 and PZT-5H are two piezoelectric materials while Zn and SiC (Homulka and Keer, 1995)
are two non-piezoelectric materials.

8.1. Interface stress singularities

Table 2 presents stress singularities for the case in which an insulating crack is formed on the upper side
of a conducting interface inclusion, d1;2 are two out-of-plane stress singularities. From the last four rows in
the Table, we find that except the two additional electric field singularities d3;4 ¼ �0:5� 0:25, all the rest six
singularities are the same as those obtained by Homulka and Keer (1995) up to the sixth and seventh digit
after the point. This verifies from one aspect the correctness of the explicit solution for stress singularities
obtained in this paper. We can also find that all the stress singularities will be non-oscillatory real power
type for the case when the debonded inclusion is embedded in a homogeneous transversely isotropic
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piezoelectric material, and these singularities belong to Category 4 singularities discussed in Section 3.
When the inclusion is embedded in dissimilar media, we find that except that the two out-of-plane sin-
gularities and two in-plane singularities are non-oscillatory, all the rest four in-plane singularities will be
oscillatory non-square root ones, and this kind of singularities belongs to Category 5 singularities discussed
in Section 3.
As a comparison, Table 3 presents stress singularities for the case in which a conducting crack is formed

on the upper side of an insulating inclusion. These singularities are obtained by employing the modified
Stroh formalism in Section 2. We can find that the two out-of-plane singularities are the same as those in
Table 2. We can observe that even when the inclusion is embedded in a homogeneous piezoelectric media,
there still exist oscillatory singularities and the eight singularities belong to Category 5 singularities dis-
cussed in Section 3. When the inclusion is embedded in dissimilar media, the eight singularities still belong
to Category 5 singularities discussed in Section 3. But in this case the degree of oscillation for the four
oscillatory singularities will be more serious than that in Table 2.

Table 1

The constitutive constants for the four materials

No. Material C11 C12 C13 C33 C44

1 PZT-4 140.20 78.92 75.65 115.77 25.25

2 PZT-5H 126.00 55.00 53.00 117.00 35.30

3 Zn 161.00 34.20 50.10 61.00 38.30

4 SiC 479.00 97.80 55.30 521.40 148.40

e31 e33 e15 e11 e33

1 PZT-4 �5.2677 15.4455 12.0000 0.6359 0.5523

2 PZT-5H �6.5000 23.3000 17.0000 1.5100 1.3000

3 Zn 0 0 0 e0 e0
4 SiC 0 0 0 e0 e0

Note: In the above table, unit for elastic constants is GPa; unit for piezoelectric constants is C/m2; unit for dielectric constants is 10�8

C/Vm. e0 ¼ 8:85� 10�12 C/Vm is the dielectric constant for vacuum and is used as dielectric constant for Zn and SiC.

Table 2

Stress singularities for the case in which an insulating crack is formed on the upper side of an interface conducting inclusion

d1;2 d3;4 d5;6 d7;8

1þ 1 �0:5� 0:25 �0:5� 0:190248 �0:5� 0:25 �0:5� 0:309752
2þ 2 �0:5� 0:25 �0:5� 0:230555 �0:5� 0:25 �0:5� 0:269445
1þ 2 �0:5� 0:230857 �0:5� 0:147590 �0:5� 0:258062þ 0:008691i �0:5� 0:258062� 0:008691i
2þ 1 �0:5� 0:269143 �0:5� 0:331843 �0:5� 0:251649þ 0:023505i �0:5� 0:251649� 0:023505i
1þ 3 �0:5� 0:205098 �0:5� 0:489665 �0:5� 0:270751þ 0:045913i �0:5� 0:270751� 0:045913i
3þ 1 �0:5� 0:294902 �0:5� 0:009810 �0:5� 0:249673þ 0:039852i �0:5� 0:249673� 0:039852i
1þ 4 �0:5� 0:122947 �0:5� 0:489666 �0:5� 0:155135þ 0:106724i �0:5� 0:155135� 0:106724i
4þ 1 �0:5� 0:377053 �0:5� 0:011334 �0:5� 0:357307þ 0:023255i �0:5� 0:357307� 0:023255i
2þ 3 �0:5� 0:223799 �0:5� 0:492919 �0:5� 0:277021þ 0:044266i �0:5� 0:277021� 0:044266i
3þ 2 �0:5� 0:276201 �0:5� 0:006692 �0:5� 0:236710þ 0:052862i �0:5� 0:236710� 0:052862i
2þ 4 �0:5� 0:136917 �0:5� 0:492919 �0:5� 0:161177þ 0:108041i �0:5� 0:161177� 0:108041i
4þ 2 �0:5� 0:363083 �0:5� 0:007475 �0:5� 0:347651þ 0:028191i �0:5� 0:347651� 0:028191i
3þ 3 �0:5� 0:25 �0:5� 0:25 �0:5� 0:25þ 0:04744894844i �0:5� 0:25� 0:04744894844i
4þ 4 �0:5� 0:25 �0:5� 0:25 �0:5� 0:25þ 0:06621947513i �0:5� 0:25� 0:06621947513i
3þ 4 �0:5� 0:157924 �0:5� 0:25 �0:5� 0:135268þ 0:09316652305i �0:5� 0:135268� 0:09316652305i
4þ 3 �0:5� 0:342076 �0:5� 0:25 �0:5� 0:363320þ 0:01046910742i �0:5� 0:363320� 0:01046910742i

Note: the number before the sign ‘‘þ’’ represents the upper half plane, while the number behind the sign ‘‘þ’’ represents the lower half
plane.
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Table 4 lists all the seven singularities for the case in which the upper debonded side of a conducting
inclusion is also conducting. The two out-of-plane singularities are still invariant and there exists a common
in-plane singularity �0:5, the rest four in-plane singularities are oscillatory non-square root singularities.
In all the above three cases there exist oscillatory singularities and all the singularities are verified nu-

merically to be invariant under rotations about the x3-axis. The existence of the oscillatory singularities
means that the physical quantities such as stresses, strains and electric fields possess oscillatory properties
and the physically unacceptable interpenetration of crack surfaces (Ting, 1986). Table 5 presents all the six
singularities for the case in which the upper debonded conducting part of the conducting inclusion is in
smooth contact with the conducting inclusion. We can find that two out-of-plane singularities still remain
unchanged. Except for the case in which the two media are two identical materials, the four in-plane
singularities will change under rotations of the coordinate system about the x3-axis. When the rotation
angle is h ¼ 0�, we find that there are two common in-plane singularities �0:5 and the rest two in-plane
singularities are non-oscillatory real power type; when the rotation angle is h ¼ 45�, we can observe that
there still exist oscillatory singularities for 1þ 4 combination (PZT-4=SiC) and 2þ 4 combination

Table 3

Stress singularities for the case in which a conducting crack is formed on the upper side of an interface insulating inclusion

d1;2 d3;4 d5;6 d7;8

1þ 1 �0:5� 0:25 �0:5� 0:25 �0:5� 0:25þ 0:112534i �0:5� 0:25� 0:112534i
2þ 2 �0:5� 0:25 �0:5� 0:25 �0:5� 0:25þ 0:105342i �0:5� 0:25� 0:105342i
1þ 2 �0:5� 0:230857 �0:5� 0:255901 �0:5� 0:261026þ 0:085685i �0:5� 0:261026� 0:085685i
2þ 1 �0:5� 0:269143 �0:5� 0:253583 �0:5� 0:231965þ 0:112293i �0:5� 0:231965� 0:112293i
1þ 3 �0:5� 0:205098 �0:5� 0:009274 �0:5� 0:252177þ 0:055566i �0:5� 0:252177� 0:055566i
3þ 1 �0:5� 0:294902 �0:5� 0:489665 �0:5� 0:227809þ 0:063143i �0:5� 0:227809� 0:063143i
1þ 4 �0:5� 0:122947 �0:5� 0:007230 �0:5� 0:122560þ 0:128473i �0:5� 0:122560� 0:128473i
4þ 1 �0:5� 0:377053 �0:5� 0:489671 �0:5� 0:344777þ 0:029044i �0:5� 0:344777� 0:029044i
2þ 3 �0:5� 0:223799 �0:5� 0:006555 �0:5� 0:264712þ 0:052050i �0:5� 0:264712� 0:052050i
3þ 2 �0:5� 0:276201 �0:5� 0:492919 �0:5� 0:220890þ 0:067830i �0:5� 0:220890� 0:067830i
2þ 4 �0:5� 0:136917 �0:5� 0:005821 �0:5� 0:139435þ 0:123230i �0:5� 0:139435� 0:123230i
4þ 2 �0:5� 0:363083 �0:5� 0:492920 �0:5� 0:338598þ 0:032175i �0:5� 0:338598� 0:032175i

Note: the number before the sign ‘‘þ’’ represents the upper half plane, while the number behind the sign ‘‘þ’’ represents the lower half
plane.

Table 4

Stress singularities for the case in which a conducting crack is formed on the upper side of an interface conducting inclusion

d1;2 d3 d4;5 d6;7

1þ 1 �0:5� 0:25 �0:5 �0:5� 0:25þ 0:022106i �0:5� 0:25� 0:022106i
2þ 2 �0:5� 0:25 �0:5 �0:5� 0:25þ 0:041768i �0:5� 0:25� 0:041768i
1þ 2 �0:5� 0:230857 �0:5 �0:5� 0:235001þ 0:034912i �0:5� 0:235001� 0:034912i
2þ 1 �0:5� 0:269143 �0:5 �0:5� 0:263648þ 0:029118i �0:5� 0:263648� 0:029118i
1þ 3 �0:5� 0:205098 �0:5 �0:5� 0:252159þ 0:055537i �0:5� 0:252159� 0:055537i
3þ 1 �0:5� 0:294902 �0:5 �0:5� 0:249670þ 0:03983668i �0:5� 0:249670� 0:03983668i
1þ 4 �0:5� 0:122947 �0:5 �0:5� 0:122419þ 0:128441i �0:5� 0:122419� 0:128441i
4þ 1 �0:5� 0:377053 �0:5 �0:5� 0:357318þ 0:023245i �0:5� 0:357318� 0:023245i
2þ 3 �0:5� 0:223799 �0:5 �0:5� 0:264708þ 0:052041i �0:5� 0:264708� 0:052041i
3þ 2 �0:5� 0:276201 �0:5 �0:5� 0:236708þ 0:052855i �0:5� 0:236708� 0:052855i
2þ 4 �0:5� 0:136917 �0:5 �0:5� 0:139394þ 0:123212i �0:5� 0:139394� 0:123212i
4þ 2 �0:5� 0:363083 �0:5 �0:5� 0:347655þ 0:028187i �0:5� 0:347655� 0:028187i

Note: the number before the sign ‘‘þ’’ represents the upper half plane, while the number behind the sign ‘‘þ’’ represents the lower half
plane.
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(PZT-5H=SiC). In summary, we find that in this model the singularities are rarely oscillatory and the model
can be taken as a plausible model for interface defects.
Table 6 presents all the five singularities for the case in which ½�a; a� is a traction-free crack whose upper

surface is insulating while whose lower surface is conducting. We can find that there exists a common out-
of-plane singularity �0:5, among the four in-plane singularities two singularities are oscillatory square root
ones and the other two singularities are non-oscillatory real power type.
Table 7 presents all the four singularities for the two cases in which the two surfaces of the crack are

simultaneously insulating or conducting. We can find that in both the two cases there exist a common out-
of-plane singularity �0:5 and a common in-plane singularity �0:5, for an insulating crack the rest two
in-plane singularities can be oscillatory or non-oscillatory; while for a conducting crack all the rest two in-
plane singularities are oscillatory square root singularities. Table 8 presents all the four singularities for
ideally bonded conducting or insulating rigid line inclusion. We can find that for the two cases there also
exist a common out-of-plane singularity �0:5 and a common in-plane singularity �0:5, but contrary to the
two crack cases the rest two in-plane singularities for a conducting inclusion may be oscillatory or non-

Table 6

Stress singularities for a crack whose upper surface is insulating while whose lower surface is conducting

d1 d2;3 d4;5

1þ 1 �0.5 �0.5 �0:5� 0:5
2þ 2 �0.5 �0.5 �0:5� 0:5
1þ 2 �0.5 �0:5� 0:200481 �0:5� 0:018157i
2þ 1 �0.5 �0:5� 0:304729 �0:5� 0:016444i
1þ 3 �0.5 �0:5� 0:490478 �0:5� 0:005872i
3þ 1 �0.5 �0:5� 0:002223 �0:5� 0:108309i
1þ 4 �0.5 �0:5� 0:489920 �0:5� 0:080988i
4þ 1 �0.5 �0:5� 0:000932 �0:5� 0:175938i
2þ 3 �0.5 �0:5� 0:493348 �0:5� 0:004657i
3þ 2 �0.5 �0:5� 0:000988 �0:5� 0:087779i
2þ 4 �0.5 �0:5� 0:493061 �0:5� 0:083657i
4þ 2 �0.5 �0:5� 0:001939 �0:5� 0:154824i

Table 5

Stress singularities for the case in which the upper debonded conducting part of the conducting inclusion is in smooth contact with the

conducting inclusion

d1;2 d3;4 ð0�Þ d3;4 ð45�Þ d5;6 ð0�Þ d5;6 ð45�Þ
1þ 1 �0:5� 0:25 �0.5 �0.5 �0:5� 0:25 �0:5� 0:25
2þ 2 �0:5� 0:25 �0.5 �0.5 �0:5� 0:25 �0:5� 0:25
1þ 2 �0:5� 0:230857 �0.5 �0:5� 0:005869 �0:5� 0:234481 �0:5� 0:232342
2þ 1 �0:5� 0:269143 �0.5 �0:5� 0:004467 �0:5� 0:263644 �0:5� 0:265459
1þ 3 �0:5� 0:205098 �0.5 �0:5� 0:096964 �0:5� 0:254028 �0:5� 0:240116
3þ 1 �0:5� 0:294902 �0.5 �0:5� 0:061871 �0:5� 0:288852 �0:5� 0:261124
1þ 4 �0:5� 0:122947 �0.5 �0:5� 0:103254þ 0:106630i �0:5� 0:130965 �0:5� 0:103254� 0:106630i
4þ 1 �0:5� 0:377053 �0.5 �0:5� 0:055574 �0:5� 0:371095 �0:5� 0:358564
2þ 3 �0:5� 0:223799 �0.5 �0:5� 0:070192 �0:5� 0:258972 �0:5� 0:260357
3þ 2 �0:5� 0:276201 �0.5 �0:5� 0:054164 �0:5� 0:268974 �0:5� 0:242948
2þ 4 �0:5� 0:136917 �0.5 �0:5� 0:103600þ 0:088051i �0:5� 0:139809 �0:5� 0:103600� 0:088051i
4þ 2 �0:5� 0:363083 �0.5 �0:5� 0:048233 �0:5� 0:359847 �0:5� 0:348991

Note: the number before the sign ‘‘þ’’ represents the upper half plane, while the number behind the sign ‘‘þ’’ represents the lower half
plane.
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oscillatory; while all the rest two in-plane singularities for an insulating inclusion will be oscillatory square
root singularities.
Table 9 presents all the three singularities for the case in which a permeable crack lies on ½�a; a�. We can

find that there is a common out-of-plane singularity �0:5 and the rest two in-plane singularities are
oscillatory square root singularities. As for the closed crack whose two surfaces are in smooth contact with
each other, since in the present discussion the out-of-plane deformations are decoupled from the in-plane
deformations, then both the two singularities will be �0:5. The �0:5 singularities are also verified by our
numerical calculation.
The present numerical calculations verify that all the stress singularities listed from Tables 6 to 9 will be

invariant under rotations about the x3-axis.

8.2. Rotation of the conducting rigid line inclusion, distribution of tractions on the interface, surface opening
displacements and electric potential difference on the debonded inclusion

Since material orientations, combinations of the two materials, external loading conditions, etc will
result in an infinite number of possible configurations, here we will only present numerical results for typical
configurations. The upper half plane is chosen to be the piezoelectric material PZT-4 while the lower half
plane is chosen to be the non-piezoelectric material Zn. To guarantee the contact zones are sufficiently
small, the two-phase composite system is subject to remote uniform loading t12 ¼ 0 r1

22 0 0½ �T , e11 ¼ 0.

Table 7

Stress singularities for the two cases in which the two surfaces of the crack are simultaneously insulating or conducting

d1 d2 d3;4 (insulating) d�
3;4 (conducting)

1þ 2 �0.5 �0.5 �0:5� 0:036364 �0:5� 0:018622i
1þ 3 �0.5 �0.5 �0:5� 0:005188i �0:5� 0:108707i
1þ 4 �0.5 �0.5 �0:5� 0:080859i �0:5� 0:176223i
2þ 3 �0.5 �0.5 �0:5� 0:004457i �0:5� 0:088023i
2þ 4 �0.5 �0.5 �0:5� 0:083623i �0:5� 0:154963i

Table 8

Stress singularities for an ideally bonded conducting or insulating rigid line inclusion

d1 d2 d3;4 (conducting) d�
3;4 (insulating)

1þ 2 �0.5 �0.5 �0:5� 0:024350i �0:5� 0:054578i
1þ 3 �0.5 �0.5 �0:5� 0:119060 �0:5� 0:038248i
1þ 4 �0.5 �0.5 �0:5� 0:021875 �0:5� 0:074543i
2þ 3 �0.5 �0.5 �0:5� 0:095665 �0:5� 0:048087i
2þ 4 �0.5 �0.5 �0:5� 0:009191i �0:5� 0:068080i

Table 9

Stress singularities for a permeable crack

d1 d2;3

1þ 2 �0.5 �0:5� 0:017156i
1þ 3 �0.5 �0:5� 0:005846i
1þ 4 �0.5 �0:5� 0:080932i
2þ 3 �0.5 �0:5� 0:004649i
2þ 4 �0.5 �0:5� 0:083640i
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When there is no rotation of the coordinate system about the x3-axis, the rigid line inclusion will also not
rotate about the x3-axis. Fig. 2 depicts the variations of normalized rotation angle exx ¼ 104r1

22x under
different rotations of the two materials about the x3-axis for three configurations. (a: both the materials are
rotated by a common angle; b: the upper PZT-4 is rotated while the lower Zn is fixed; c: the upper PZT-4 is
fixed while the lower Zn is rotated). It can be observed from this figure that when both the two materials
are rotated by a common angle, the variations of x are most prominent and the maximum magnitude
of rotation angle exxmax ¼ 4:3829 takes place when h ¼ 40:275� and h ¼ 139:725�; when the upper PZT-4
is rotated while the lower Zn is fixed, the variations of x are most insignificant with a maximum magnitude
of rotation angle exxmax ¼ 0:4095; when the upper PZT-4 is fixed while the lower Zn is rotated, the variations
of x lie between the above two cases with a maximum magnitude of rotation angle exxmax ¼ 4:0309.
Observing the material constants listed in Table 1, we find that the anisotropic effect of piezoelectric
material PZT-4 is weaker than that of the non-piezoelectric material Zn and consequently when only PZT-4
is rotated the variations of x will be minimal, while when Zn is rotated the variations of x will be sig-
nificant.
Figs. 3 and 4 show respectively the normalized shear stress r12=r1

22 and the normalized normal stress
r22=r1

22 along the interface y ¼ 0�. Concrete calculations demonstrate that the rotations about the x3-axis
will exert minimal influence on the stress distributions, then only stress distributions for the case in which
both the two materials are fixed are shown in the two figures. One can observe from Fig. 3 that except at the
regions very near the two tips of the debonded inclusion, the magnitude of shear stress on the rest of the
inclusion is very small; while the magnitude of shear stress increases abruptly when approaching the two
tips of the inclusion. We can observe from Fig. 4 that tensile stress acting on the lower surface of the in-
clusion is concentrated in the middle part of the inclusion, while compressive stress is distributed in the
regions nears the two tips of the inclusion so as to guarantee balance of force acting on the inclusion in the y
direction. The normal stress at the ideally bonded part of the interface jxj > a is always greater than the
remote tension r1

22.

Fig. 2. Variations of normalized rotation angle exx ¼ 104r1
22x under different rotations of the two materials about the x3-axis.
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Figs. 5 and 6 show respectively the horizontal opening displacement Du1=ðar1
22Þ and vertical opening

displacement Du2=ðar1
22Þ on the debonded inclusion as well as their variations under different rotations of

Fig. 3. The normalized shear stress r12=r1
22 along the interface y ¼ 0�.

Fig. 4. The normalized normal stress r22=r1
22 along the interface y ¼ 0�.
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Fig. 5. Horizontal opening displacement Du1=ðar1
22Þ on the debonded inclusion and its variations under different rotations about the

x3-axis (( ) �0�; ( ) �45�; ( ) �60�; ( ) �90�; ( ) �120�; ( ) �135�).

Fig. 6. Vertical opening displacement Du2=ðar1
22Þ on the debonded inclusion and its variations under different rotations about the

x3-axis (( ) �0�; ( ) �45�; ( ) �60�; ( ) �90�; ( ) �120�; ( ) �135�).
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the coordinate system about the x3-axis. We can observe from Fig. 5 that the upper debonded part has a
tendency to move toward the y-axis. The maximum horizontal opening displacement (6:0874� 10�12)
occurs when the coordinate system is rotated by 45�; the horizontal opening displacements for the two cases
when the coordinate system is rotated by 0� and 90� are identical. A careful checking of the data reveals
that Du2 < 0 can occur near the two tips of the debonded inclusion, which is due to the physically unac-
ceptable interpenetration phenomenon of the surfaces caused by the oscillatory stress singularities. For-
tunately the interpenetration zones are extremely small (so small that it can not be distinguishable in Fig. 6)
and can be ignored under the remote tensile loads. The maximum vertical opening displacement (2:7728�
10�11) occurs when the coordinate system is rotated by 0�; the minimum vertical opening displacement
(2:5020� 10�11) takes place when the coordinate system is rotated by 90�.
Fig. 7 shows the electric potential difference on the debonded inclusion and its variations under different

rotations of the coordinate system about the x3-axis. In comparison with the previously illustrated physical
quantities, the material orientation will exert the most prominent influence on the distribution of electric
potential difference. We can find that when the rotation angle is increased from 0�, the curves of electric
potential difference will be compressed and simultaneously the compressed curves will also rotate in the
counterclock direction.
Fig. 8 shows vertical opening displacement Du2=ðar1

12Þ on the debonded inclusion under remote shear
loads t12 ¼ r1

12 0 0 0½ �T , e11 ¼ 0. One can observe that under this kind of external loads, Du2 < 0 can
occur on the left half part of the inclusion x 2 ½�a; 0�. Adopting the contact zone model may be more
reasonable under this kind of loads, but this model will not be further pursued in the present paper.
We have also verified numerically the correctness of the real form solutions presented in Section 5. Since

the eigenvalue problem Eq. (36) can be avoided, the accuracy of the real form solution is even better during
numerical calculations.

Fig. 7. Electric potential difference on the debonded inclusion and its variations under different rotations about the x3-axis (( ) �0�;
( ) �45�; ( ) �60�; ( ) �90�; ( ) �120�; ( ) �135�).
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9. Concluding remarks

The standard Stroh formalism is employed to solve a kind of mixed boundary value problems at the
interface of dissimilar anisotropic piezoelectric bimaterials. Since the Hermitian property of G�1 is fully
exploited, not only the explicit solution for stress singularities can be obtained but also inversion of the
modal matrix P can be circumvented during the decoupling process for the coupled Hilbert problem of
vector form. We find that stress singularities for any kind of interface defects can be obtained from G�1,
and all of the existing models for interface defects, e.g., insulating crack (Suo et al., 1992), conducting rigid
line inclusion (Deng and Meguid, 1998), electrode–ceramic interfacial crack (Ru, 2000a), compliant metal
electrode layer (Ru, 2000b), and permeable crack, etc can be treated as special cases discussed in this paper.
The numerical results verify the correctness of the theoretical analyses. Meanwhile, the discussions carried
out in this paper can be taken as complement to the works of Ting (1986) and Homulka and Keer (1995)
when considering electromechanical coupling effects. It is not difficult to apply the methodology presented
here to investigate the case when there exist many collinear interface debonded conducting rigid line in-
clusions and when the composite system is subject to other kinds of thermal–mechanical–electrical loads,
e.g., line force and line charge, dislocation and electric-potential dislocation, thermal loads, etc. The success
in obtaining the exact solution is due to the powerful tool offered by Stroh formalism.
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Fig. 8. Vertical opening displacement Du2=ðar1
12Þ on the debonded inclusion under remote shear loads t12 ¼ r1

12 0 0 0

 �T

, e11 ¼ 0.
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