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Abstract

The special mixed boundary value problem in which a debonded conducting rigid line inclusion is embedded at the
interface of two piezoelectric half planes is solved analytically by employing the 8-D Stroh formalism. Different from
existing interface insulating crack model and interface conducting rigid line inclusion model, the presently analyzed
model is based on the assumption that all of the physical quantities, i.e., tractions, displacements, normal component of
electric displacements and electric potential, are discontinuous across the interface defect. Explicit solutions for stress
singularities at the tips of debonded conducting rigid line inclusion are obtained. Closed form solutions for the dis-
tribution of tractions on the interface, surface opening displacements and jump in electric potential on the debonded
inclusion are also obtained, in addition real form solutions for these physical quantities are derived. Various forms of
interface defect problems encountered in practice are solved within a unified framework and the stress singularities
induced by those interface defects are discussed in detail. Particularly, we find that the analysis of interface cracks
between the embedded electrode layer and piezoelectric ceramics can also be carried out within the unified frame-
work. © 2002 Published by Elsevier Science Ltd.

Keywords: Piezoelectricity; Mixed boundary value problem; Standard Stroh formalism and its modifications; Explicit solution; Stress
singularity

1. Introduction

The mixed boundary value problems in isotropic and anisotropic elasticity have received many investi-
gators’ attention. Keer (1975) considered the problem of a debonded rigid thin circular disk in a single
isotropic material. Through integral transform, he finally reduced the problem to two decoupled Riemann—
Hilbert problems and obtained closed form expressions for the axial stiffness of the system. Gladwell (1999)
treated the problems of bonded or partially bonded contact of a rigid circular disk between dissimilar iso-
tropic half spaces. Through systematic application of Fourier and Abel transforms, he reduced the problem
to the solution to Riemann-Hilbert problems and also obtained closed form expressions for the axial stiffness
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of the composite system. Muskhelishvili (1953) addressed the straight cut problem in a homogeneous iso-
tropic material. Tractions are prescribed on one side of the cut while displacements are prescribed on the
other side of the cut. Markenscoff and Ni (1996) investigated the problem of a debonded rigid line inclusion at
the interface of two dissimilar isotropic half planes. Their method of solution is based on distributing den-
sities of both dislocations and line loads on the cut surface, and they reduced the original problem to coupled
singular integral equations, which were then solved analytically through diagonalization. In their discussions,
they obtained the explicit relationship between stress singularities and the material constants combination.
Ting (1986) studied the stress singularities for crack, inclusion and mixed boundary value problems at the
interface of dissimilar anisotropic (including isotropic) bimaterials by employing the Stroh formalism (6-D).
For crack and inclusion problems, he obtained explicit solutions for the stress singularities; while for the
mixed boundary value problems, he only presented the explicit solutions for isotropic bimaterials. He also
proved that stress singularities for all the three cases are invariant with respect to the orientation of the in-
terface relative to the bimaterials. Also by employing the Stroh formalism (6-D), Homulka and Keer (1995)
solved the problem of debonded rigid line inclusion at the interface of dissimilar anisotropic bimaterials. They
reduced the mixed boundary value problem to coupled Riemann—Hilbert problems and decoupled them to
single Hilbert problem through adopting a clever decoupling method proposed by Clements (1971). In their
analyses, the rigid line inclusion which was termed anchor in their paper, may experience a rotation about the
x3-axis and the angle of rotation is determined through balance of moment on the inclusion.

Piezoelectric problems of cracks and inclusions under mechanical and electrical loads continue to attract
attention of the researchers because of their numerous practical applications. Recent contributions include
the works of Kuo and Barnett (1991), Suo et al. (1992), Chung and Ting (1996), Deng and Meguid (1998), Lu
et al. (1998, 1999, 2000), Ru (2000a,b), among others. Although the interface crack problem (Kuo and
Barnett, 1991; Suo et al., 1992) and interface inclusion problem (Deng and Meguid, 1998) in piezoelectric
bimaterials have been addressed and solved, the mixed boundary value problems at piezoelectric bimaterial
interface have not yet been studied thoroughly. The mixed boundary value problem discussed in the present
work can be interpreted as that a conducting rigid line inclusion is embedded at the interface of dissimilar
piezoelectric half planes, and is debonded due to external thermal-mechanical—-electrical loading, so that an
insulating crack is formed on one side of the line inclusion. First, the standard Stroh formalism (8-D) as well
as its modifications is presented, and degenerate cases in which two or more Stroh eigenvalues and their
associated Stroh eigenvectors become equal are also considered, then we consider the special mixed
boundary value problem in which a debonded conducting rigid line inclusion is embedded at the interface of
two piezoelectric half planes and we employ the standard Stroh formalism to obtain an exact solution to the
problem. During the solving process, an explicit solution for stress singularities is obtained and this explicit
solution can be considered as a proper supplement to Ting’s solution (Ting, 1986). The modified Stroh
formalism can be applied to treat other more general mixed boundary value problems, e.g., a conducting
crack is formed on one side of an interface insulating rigid inclusion. Finally we find that various forms of
interface defects can be treated in a unified way and existing models for interface defects can be taken as
special cases discussed in the present paper. Particularly, the analysis of interface cracks between the em-
bedded electrode layer and piezoelectric ceramics can also be carried out within the unified framework.

2. Standard Stroh formalism and its modifications

Basic equations for linear piezoelectric materials are as follows:
05;,=0 Di; =0
vy =3 +u) Ei=—¢, (1)

0;j = CijVir — ewjEr D = epyyi; + enkl
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where u;, ¢, 0;;, D; are respectively mechanical displacements, electric potential, stresses and electric dis-
placements; y,; and E; are strain tensor and electric field vector; Cyuy, e, &; are respectively elastic moduli
measured in a constant electric field, piezoelectric constants and dielectric constants measured at constant
strain.

For the two-dimensional problem in which the physical quantities only depend on the fixed Cartesian
coordinates x and y, the general solution to the above system of partial differential equations is (Suo et al.,
1992; Chung and Ting, 1996; Deng and Meguid, 1998; Lu et al., 2000)

U=[uy w us ¢ =Af(z)+Af(2)

O=[P & P D] =Bf(z) + Bf(z) @)
where the generalized stress function vector ® satisfies the following relationship

o1 =—Dir op=07; i=1-3

Dy = —0rs Ds—n o 3)
A and B are two 4 x 4 complex matrices defined as

A=[a, a a; a] B=[b; b, by by] (4)
f(z) can be expressed as

f(2) =[filz1)) frlz2) filzs) falza)]" (5a)

z,=x+py (x=1-4) Im(p) >0 (5b)
a, b and p satisfy the following eigenvalue problem

HEH ©
with

N= [N N ™

N, =-T'R" (8)

N,=T'=N] 9)

N; =RT'R" - Q=N] (10)

o-[§ ] mefg o] -[a %] 2
and

Qs =Cin (R =Ciapn (T)y =Copr (i,k=1-3)

e;=en;, en ey] (i.j=12)
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Since A and B satisfy the following normalized orthogonality relation

B AT|[A A]

ERdEIE (12)
then the following three real 4 x 4 matrices S, H and L can be introduced

S =i(2AB” —1), H=2iAA", L= —2iBB’ (13)

The above three real matrices will be frequently used in the following analyses. H and L are both symmetric
while SH, LS, H™'S, SL™! are antisymmetric. Moreover, S, H and L are not entirely independent and are
related by

HL - SS =1 (14)

In the above, we have presented the standard Stroh formalism. If one or more corresponding compo-
nents in U and ® are exchanged, then the following defined U and ® can be obtained

U = Af(2) + Af(2)

. ~ (15)
® = Bf(z) + Bf(z)
where

U= (Lu- YU+ YD, ®=YU+ (L,—Y)D (16a)

A=(4s—Y)A+YB, B=VYA+ (L,—Y)B (16b)
If only the first component is exchanged, then

Y=Y, =diag[l 0 0 O] (17a)
If only the second component is exchanged, then

Y=Y,=diag[0 1 0 0] (17b)
If only the third component is exchanged, then

Y=Y;=diag[0 0 1 O] (17¢)
If only the fourth component is exchanged, then

Y=Y,=diag[0 0 0 1] (17d)

If the ith and jth components in U are exchanged with the two corresponding components in @, then
Y=Yi+Y, iA)(ij=14) (17¢)

If the ith, jth and mth components in U are exchanged with the three corresponding components in @,
then

It can be readily proved that A and B still satisfy the following normalized orthogonality relationship
BT AT|[X %
BoAA Al (18)
B” A"]|B B

then similarly three real matrices S, H and L can be introduced as follows:

S=i(2AB" —1), H=2iAA", L =-2iBB’ (19)
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H and L are both symmetric while gfl, ig, H' g, SL ! are antisymmetric. In addition, g, H and L will
satisfy the following relationship

HL -SS =1 (20)
The above presented modified Stroh formalism will be useful in solving some special mixed boundary value

problems.
The previously obtained standard Stroh formalism and its modifications are based on the assumption

zf (i = 1-4) associated

with p; (i = 1-4). Similar to the discussions for purely anisotropic elastic material (see, Ting, 2000 and the

that the eigenvalue problem Eq. (6) possesses four independent eigenvectors &; = [

. . . . U .
references cited therein), we will endeavor to present general solution IT = [ for degenerate cases in

()
which the number of the independent eigenvectors of Eq. (6) is less than four according to the following
four typical classification

s p=pEpFEP G =E
Im= 2Re{f1 (z1)¢ +dipl [f2(z1)&] + f3(z3)&5 ‘|'f4(24)f4} (21)

In this degenerate case, there are only three independent eigenvectors.
s p=p=piFp G =86=20E

- zRe{fl e+ ()] +(§‘—p%m<zl>¢]1 +f4(24)54} (22)

In this degenerate case, there are only two independent eigenvectors.
s p=p,p=ps =G, G=4

- 2Re{f1 (=) +dipl (2] + Az)E +dimm(23)53]} (23)

In this degenerate case, there are also only two independent eigenvectors.
s p=p=pi=ps ===

- 2Re{f1<zl>fl +dim[fz<zl>él1 +f—p%m<zl>esl1 +%V4<zl>él1} (24)

In this extraordinary degenerate case, there is only one independent eigenvector.

In the above we have not listed all of the possible degenerate cases as done by Ting (2000) for purely
anisotropic materials, but we hasten to add that the form of solution for any other degenerate cases will
belong to that for one of the above four cases.

3. Exact solution

As shown in Fig. 1, an anisotropic piezoelectric medium #1, which occupies the upper half plane z € S,
and another anisotropic piezoelectric medium #2, which occupies the lower half plane z € §—, form an
interface y = 0. At the portion |x| < a of the interface, there exists a conducting rigid line inclusion whose
upper surface has been fully debonded and there is no traction and free charge on this surface; while the
lower surface of the inclusion is still perfectly bonded to the piezoelectric medium #2; at the rest portion of
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Fig. 1. An interface conducting inclusion debonded at the upper side.

the interface outside the inclusion the two piezoelectric media are still perfectly bonded to each other. The
two-phase piezoelectric composite system is subject to remote uniform electromechanical loading t° =
[0 0% o3 D¥] ander =[ny % 2% —E°]

Based on the superposition principle for a linear system, then it suffices to consider the disturbance fields
caused by the debonded conducting rigid line inclusion at the interface. In the disturbance fields, the upper
and lower surfaces of the debonded rigid line inclusion should satisfy the following boundary conditions

On the upper side y = 0", the following is satisfied

(I)l,l = —tgc |X| <a (25)
On the other lower side y = 07, the following is satisfied
Upy=-€e€+00 1 0 0]" x[<a (26)

where in Eq. (26) w denotes rotation angle of the rigid line about the x;-axis.
Since the two piezoelectric media are ideally bonded at the rest of the interface outside the line inclusion,
then we have

o =0,
U, = U, } |x| > a (27)

Define the following two jump potential function vectors h;(z) and h,(z)

hy(2) = Aif(z) — Axf,(z) Im(z) >0 (28a)

Aofi(z2) —Af(z) Im(z) <0

—_— ~—

hy(z) = Blf:‘ @) = Bfy(z) Im(z) >0 .
B.f}(z) — Bif;(z) Im(z) <0

Noticing the above two defined jump potential function vectors, then the boundary conditions on the
interface y = 0 can be expressed as
U;; — Uy =h(x) —h;

11 2,1 1+(x) I,(X) (29)
(D]J — (DZ.I = h2 (X) — h2 (.X)

where the superscript ‘+’ denotes approaching the interface y = 0 from the upper half plane; similarly, the
superscript ‘—’ indicates approaching the interface y = 0 from the lower half plane.
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From the above equation, it can be found that h;(z) represents jumps in the tangential derivative with
respect to the interface of displacements and electric potential across the interface and when |z| — oo,
h;(z) = 0(z2); while hy(z) represents jumps in tractions and normal component of electric displacements
across the interface and when |z| — oo, hy(z) = 0(z™2). The original holomorphic function vectors f/(z),
f,(z) and their analytical continuations fll(z), f'z(z) can be expressed in terms of the two newly defined
function vectors h;(z) and h,(z) as follows:

2] [ B;'™M'  BI'MM'|[h

! @) _ o o [ lﬂ Im(z) > 0 (30a)
L) | | -A MM, —iA, M| [h(2)

M= 7 roos—lee1 e ———17]

)| _| B M -B MM [m@}lm@<o (30b)
0E) | (AMTM, —iAa'MT | L)

where

M; = —iBA ! = H ' (1+iSy) = L,(I—iS,)”" (k=1,2) (31a)
M =M, + M, = H' + H;' +i(H;'S, — H,'S;) (31b)
M. =M;'+M, =L +L;' +i(S;L;' — S;L;") (31c)

M, and M, are called the impedance matrices (Suo et al., 1992) and are two Hermitian matrices; M" and
M. are also two Hermitian matrices.

At the ideally bonded portion (|x| > «) of the interface, Eq. (27) shall be satisfied and can be expressed as
follows:

h(x) —h (x) =0 |x| >a (32)
where
o) = i | (33)

and when |z| — oo, h(z) = 0(z72).
On the debonded interface conducting rigid line inclusion (|x| < @), Egs. (25) and (26) shall be satisfied
and can be expressed in terms of h(z) as follows:

G'h(x)+G h(x)=g [|<a (34)
where in the above equation
_ M' —iMM!
G l: |:M**1M 1\;[*71 :| (353)
1 1 —
M, il L' 0 J-sL;! -1
G=| " il R ] ! 35b
[iLM M, } [ o -1'| 7 1 m's, (35)

oo [5]

q=[0 0 0 0 0 1 0 0] (35d)
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From the above two definitions Eqs. (35a) and (35b), it is apparent that G and G~' are both 8 x 8 Her-
mitian matrices. Eqgs. (32) and (34) constitute mutually coupled Riemann—Hilbert problem of vector form
(8-D) with discontinuous coefficients. Then the coupled Hilbert problem shall be decoupled through in-
troduction of coordinate transformation. In view of Eq. (34), we consider the following eigenvalue problem

(G + ™Gy =0 (36)

Substituting specific expression for G (Egs. (35a)—-(35d)) into the above equation and for a non-trivial
solution of v, we have

lW+ipD| =0 (37)
where
[0
D= [ 0 —H21:| (38a)
_[SsiL;! I
wo [ L] -
1+e2ni6
b=1—aw (38¢)
and
D=D", W=-W (39)
Eq. (37) can be further simplified to be
[F+ipl|| =0 (40)
where
_ =S L
F= [ > SJ (41)

It can be readily checked that Eq. (40) is equivalent to the following equation
|(S:81 = HaL) +i(S) +S2) + (BT

-0 (42)

When the two media are both purely anisotropic elastic materials, the above equation is identical to
Ting’s result (Ting, 1986). The advantage of adopting Eq. (40) in stead of Eq. (42) will be shown in the
following analysis. Noting that W is real and antisymmetric while D is real and symmetric, then expanding
the determinant Eq. (37) or (40) will result in the following octonary algebraic equation in f

B — o’ +caft — 2’ +co =0 )
where
¢ = —Mr(F?) = —ltr(S] + 8] + 2H,Ly)
— 2 - 2
e = —H{te(F) + [Fe(F) e (P — 4P [P )}

e = —4||F||tr(F?)
co = ||[F|| = [[HoLy — S:Sq|
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During the above derivation for ¢4, Hamilton—-Caylay theorem (Wang and Shi, 1988) has been utilized.
Apparently the octonary algebraic equation (43) in f§ can reduce to a quartic algebraic equation in f*, and
the resulting quartic equation can be solved analytically using standard method to obtain the four roots f*
and consequently all the eight roots f§ of Eq. (43). The concrete solution procedure for the quartic equation
is still cumbersome and can be found in a common mathematical manual and will not be shown here. It
shall be pointed out that although Ting (1986) derived Eq. (42), he only obtained the explicit solution for
the case when both the two materials are isotropic; while in the work of Homulka and Keer (1995), the six
eigenvalues of the eigenvalue problem also must be obtained numerically. Noting that ¢y > 0, then the
stress singularities at the tips of the debonded conducting rigid line inclusion can be categorized as follows
based on the nature of the eight roots f of Eq. (43).

o category 1: Eq. (43) has eight real roots, then
51‘2 = —% + iﬁl, 53‘4 = —% + i827 55‘6 = —% + i83, 57‘8 = —% + i84 (458,)

and the corresponding eight independent eigenvectors of Eq. (36) comprise the following form of modal
matrix

P= [Vl Vl V3 V3 Vs 75 \ 4 V7} (45b)
o category 2: Eq. (43) has four real roots and four purely imaginary roots, then
dip=—Stie;, dsa=—Lie, dse=—1thk, d5=—-1%h (46a)

and the corresponding eight independent eigenvectors of Eq. (36) comprise the following form of modal
matrix

P= [Vl Vl V3 V3 Vs V¢ V7 Vg} (46b)

In addition, vs, v, V7, Vg are real vectors
o category 3: Eq. (43) has four real roots and four complex roots, then

5])2 = —% + i8|, 53‘4 = —% + i827 55,6 = —% + 01 + i?l? 57‘8 = —% + 01 - 1'))1 (473)

and the corresponding eight independent eigenvectors of Eq. (36) comprise the following form of modal
matrix

P= [Vl Vi V3 V3 V5 Vg Vs V6} (47b)
o category 4: Eq. (43) has eight purely imaginary roots, then
512 = 7% + k], 5374 = 7% + kz, 55,6 = 7% + k3, 573 = 7% + k4 (483)

and the corresponding eight independent eigenvectors of Eq. (36) comprise the following form of modal
matrix

P=[vi v vi v4 Vs V5 V7 Vg] (48b)

In addition, v;, Vv, V3, V4, Vs, Ve, V7, Vg are all real vectors
o category 5: Eq. (43) has four purely imaginary roots and four complex roots, then

51)2 = —% + &y, 5374 = —% + ks, 555 = —% + 0, + i'yl, 57¢8 = —% +0, — i'yl (493.)

and the corresponding eight independent eigenvectors of Eq. (36) comprise the following form of modal
matrix

P=[vi v; vi V4 Vs V¢ Vs Vg (49b)

In addition, v;, v, V3, V4 are real vectors
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o category 6: Eq. (43) has eight complex roots, then
Oip=—3F+0,+iy, da=—2F0—1ip, 0s6=—3L£0+1ip,, ds=—3+0,—1iy, (50a)

and the corresponding eight independent eigenvectors of Eq. (36) comprise the following form of modal
matrix

P= [V] Vo, Vi Vo V5 Vg Vs VG] (SOb)

Noticing that ¢;, k;, 0;, y; appearing in Egs. (45a)—(50b) are all real quantities and depend on the electro-
elastic properties of the bimaterials. When the special degenerate case, in which § is a double root and there
exists only one independent eigenvector associated with o, is encountered, we may have additional stress
singularities of the form #° Inr as those encountered in isotropic bimaterials (Ting, 1986; Markenscoff and
Ni, 1996).

It should be pointed out here that in the above we list all possible interface stress singularities, some
categories for the stress singularities may not exist in real physical world due to certain restrictions on
constitutive constants. Noticing G™' is Hermitian and the above categorization for interface stress singu-
larities, then the following orthogonal relationship with respect to G™' and G ' can be obtained

JPIG'P=A, JP'G 'P=-AA (51)

where in the above expression the superscript ‘H’ means conjugate and transpose of a matrix, A; isa 8 x 8
diagonal matrix, A = ((¢*™%)) with f taken from 1 to 8.
For category 1 stress singularities

J = ngg (52(1)
For category 2 and 3 stress singularities
[ I4><4 04><4 |
J= 52b
00y ) | (520)

For categories 4-6 stress singularities

[ J1 04 ]

T= 1o 3| (32
where in Egs. (52b) and (52¢)
01 0 0
n=l 0o (53)
0010
Introduce the following transformation
h(z) = Ph(z) g=A,'JPg (54)

and premultiply Eq. (34) by JP”, then the following decoupled Riemann—Hilbert problem can be obtained

()~ Al (1) =g || <o
{h*(x) —h(x)=0 |x|>a (55)

Here it should be pointed out that since the Hermitian property of G~ is fully exploited, then inversion of
the modal matrix P can be circumvented during the above decoupling procedure. The decoupling procedure
presented here is different from that adopted by Suo et al. (1992), Markenscoff and Ni (1996), Deng and
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Meguid (1998) and shall be more elegant and transparent than their approach. In the investigation of
Homulka and Keer (1995), they must also utilize inversion of the modal matrix during their solution
procedure.

From Eq. (55) and by noticing that when z — oo h(z) = 0(z"2), then explicit expression for the holo-
morphic function vector h(z) can be obtained as follows (Muskhelishvili, 1953)

= {1—X(@@)((z+ (1 +255)a)) }(I— A)"'A ' JP"g (56)
where
X(z) = ({(z+a) "z = a)")) (57)

The explicit expression for the holomorphic function vector h(z) can be obtained from Egs. (54) and (56) as
follows:

h(z) = P{I— X(z){(z + (1 +285)a)) }(I — A)"'A; ' JP"'g (58)

The above obtained holomorphic function vector h(z) has satisfied equilibrium condition of force and
charge on the line inclusion as well as the single-valuedness condition of displacements and electric po-
tential surrounding the crack. In the expressions for h(z) and h(z), there still contains an unknown real
constant o (rotation angle of the rigid inclusion) and the unknown can be determined by the following
condition that the moment of forces acting on the inclusion vanishes.

/ x0%)(x,07)dx =0 (59)

a

Or can be expressed by ﬁ(z) as the following contour integral surrounding the two faces of the line inclusion

qP ]f (2)zdz=0 (60)

Applying the residue theorem (Zhuang and Zhang, 1984), rotation angle w of the inclusion about the x3-
axis can be determined to be

n

= P (61)
where

n = q"P{05(1 4+ 0,)))(T— A)'A;'IPY [?ﬂ (62a)

m = q"P((35(1+8y))) (T— A) " A JPq (62b)

It can be observed from the above expression for w that even the two-phase composite system is only
subject to remote uniform tension o33, the line inclusion will in general experience rotation about the x;-axis
due to anisotropic effect of the bimaterials; while for isotropic bimaterials, only remote uniform shear
loading ¢75 can make the inclusion rotate about the x;-axis (Markenscoff and Ni, 1996). Up to now, the
holomorphic function vector h(z) has been completely determined. f|(z), f5(z) as well as their analytical
continuations f, 1(2), f. ,(z) can be obtained from Eqgs. (30a) and (30b) as follows:

lf’l (2)

F o | = CG'P{I - X(2){(z+ (1 +234)a)) }(I— A)'A"JP?g  Im(z) >0 (63a)
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“lgﬂ = TG P - X()((z+ (1 +25)a)) I — A)'A;'IPYg Im(z) < 0 (63b)
with
B 0
% (64)

Employing a tf/ansla_t/ing technique, the explicit full field expressions for f}(z), f,(z*) and their analytical
continuations f,(z), f,(z*) can be obtained as

[f,ll((z*)) =CG'"P(I—A)'A;'IPg - 28:<<z,;xk(zﬁ)>>CG*1PIk(1 —A)'A1IP g
= > ((Xelz))CGPL({(1 +26)a)) (1 — A) AT IPg y >0 (65)

[ i) ] = —CG 'PI—A) A IPg+ i((zﬂxk(z,;)»@’lplk(l —A)'ANIPg

k=1

+ ) ((Xi(z0))) TG PL{(1 +255)a)) (1~ A) A 'JPg y <0 (66)

=1

where in Egs. (65) and (66)
0
1

>~

I, =diag[l 0 0 0 0 0 0 0] L=diagl0 1 0 0 0 0 0 0]
I, =diagl0 0 1 0 0 0 0 0] I,=diagl0 0 0 1 0 0 0 0] ©7)
I;=diagl0 0 0 0 1 0 0 0] Ig=diagl0 0 0 0 0 1 0 0]
I, =diagl0 0 0 0 0 0 1 0] Ig=diagl0 0 0 0 0 0 0 1]

X (z) denotes the kth diagonal component function of X(z) and the superscript ‘«’ is utilized to distinguish
the Stroh eigenvalues pertaining to the lower piezoelectric half plane with those pertaining to the upper
piezoelectric half plane.

Before ending this section, we point out that as for the mixed boundary value problem in which a
conducting crack is formed on one side of an interface insulating rigid line inclusion, the modified Stroh
formalism presented in Section 2 with Y defined by Eq. (17d) should be adopted while the solution pro-
cedure carried out in this section keeps unchanged. In solving interface conducting crack and interface
insulating inclusion problems, this kind of modified Stroh formalism should better be employed to obtain
real form solutions.

4. Expressions for physical quantities

The stress fields, strain fields and electric fields at the ideally bonded part of the interface are distributed
as follows:

wi = 2iRe{G ™ }P{I - X(x){(x + (1 +254)a)) } (1 — A)'AT'IPg |x| >a (68)

where

_— [%’} (69)
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Notice the physical meaning of h(z), then the following densities of dislocations and electric potential
dislocations b as well as line loads and line charges f are continuously distributed on the line inclusion
|x| < a

2] = pxe e (s 23pancain) P i <a (70)

Integrating the above equation will yield the following closed form expression for jump in generalized
displacement vector AU = U; — U, and jump in generalized stress function vector A® = ®; — @, on the
debonded inclusion |x| < a

[AU

M)] = (® — A)PX () (A A) " IPg x| < a (71)

It is seen from Eq. (68) that stress fields, strain fields and electric fields are all singular at the two tips x = +a
of the debonded line inclusion. We can categorize the singular distributions of stress fields, strain fields and
electric fields as well as the generalized field intensity factor vector K as follows:

e category 1 stress singularities

W (}") = (27'5}")71/2RC{G71 }RC{VlrisllA{'l + V3I’i£2k3 —+ V5I"i83i{'5 + V7I"i€4IA{V7} (72&)

= ~ == ~ = ~ = ~ = T
Kz[K1 K, K; Ky Ks Ks K5 KJ (72b)
e category 2 stress singularities

Wyl(l") = (27‘[7’)_1/2RC{G71}{Re{vlri8]k1 + V37’i82k3} +V5Vk11f€5 + V6riklk6 + V7l”k2127 + Vgl"ikzkg}

(73a)
~ - — . — . . - . T
K= [Kl K. K K; Ks K¢ Ky Kg} (73b)
In addition, Ks, K¢, K7, Ky are real quantities
e category 3 stress singularities
wi(r) = 2ur) ' *Re{G™ }Re{vlri‘”lzl + V32 Ky + v K vﬁr”)‘*i"lfg} (74a)
= ~ == ~ = ~ ~ = == T
K= [Kl K, K; K; Ks K¢ Ks KJ (74b)
e category 4 stress singularities
w,(r) = (27zr)71/2Re{G’1 }{v]r}“ Ki 4+ vor MK, + v Ky + v 2Ky + vsB K s + ver B K
+ V7Vk41~<7 + V8V7k41~<g} (753)
f( = [121 1~<2 1~<3 1~<4 1~<5 1~<6 1~<7 kg]T (75b)

In addition, I~<1, IN(Z, 1~(3, I~(4, I~<5, 1~(6, I~(7, 1~<g are all real quantities



1604 Xu Wang, Y.-p. Shen | International Journal of Solids and Structures 39 (2002) 1591-1619

e category 5 stress singularities
w,l(”') = (27‘(}")71/2R€{G71}{Vﬂk1i{'1 + V2r7k1E2 + V3Ij(2[23 + V4r7k21~(4

+ Re{vsr(?l“}’ll?s + vér*91+i3’11?6}} (763)

~ . 1T

K= {Kl K, K; Ki Ks K; Ks Kﬁ} (76b)
In addition, K, K>, K3, K4 are real quantities

e category 6 stress singularities

W (}") = (27131”)7]/2R€{G71 }RG{V1I"0]+W'IA€1 + Vzl"_()l_HV'I?Z + V5I"02+ihl?5 + V6}"_02+iy21?6} (773)

~ T

K=k & K K K K K K (770)

The above analysis shows that different from the interface crack and interface inclusion (anti-crack) in

which four parameters are sufﬁcienrt to describe the singular fields, eight parameters K =
(K, K, K3 K; Ks K¢ K; Kg] mustbe employed for a debonded inclusion to describe the sin-
gular distribution of stress fields, strain fields and electric fields near the tips of the debonded inclusion.

5. Real form solutions for important physical quantities

The expressions for rotation of the rigid line inclusion (Egs. (61), (62a) and (62b)), distribution of stress
fields, strain fields and electric fields on the interface (Eqs. (68) and (70)), jumps in displacements and
electric potential (Eq. (71)) obtained in the previously two sections need the knowledge of modal matrix P,
which must be obtained through solving the eigenvalue problem Eq. (36). In this section, we will present
real form solutions for these important physical quantities. The modal matrix P will be absent in the real
form solutions and consequently the solving of eigenvalue problem Eq. (36) can be circumvented.

Noticing that the modal matrix P satisfies the orthogonality relationship Eq. (51), then the following
identities can be readily proved

PAA;JPY =G PAT'A[IPY = -G
PA'A'JPY = —GG 'G  PAA'JPY =GG'G
PA’A;'JPY = (GG )’G  PAA'JPY = —(GG )G
PA’A;'JPY = (GG '’G PA*A['JPY = (GG')'G

(78)

where in the above identities, the terms on the right-hand side only contain matrices G and G~' which have
been defined by Egs. (35a) and (35b). On the other hand, if we treat the eight 8 x 8 diagonal matrices A%,
A7 A AL A% AL A% AR as a set of independent bases, then the 8 x 8 diagonal matrices I,
(m=1,2,...,8) defined by Eq. (67) can be uniquely expressed in terms of the set of independent bases A,
A7 A2 AL AL AL A2, AP as follows:

8
Im = chznA<n75) (m = 17 27 AR 8) (79)
n=1

consequently for any 8 x 8 diagonal matrix Dy = ({(d;)), the following identity can be derived
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8 8 8
PDA; 'JP" = "d,PLA; ' JPY = Z (decm,,> PAIA JPH
m=1
= [el (GG™')’ —e,(GG™')’ +e5GG ! — ed}é

-1

+ [esl —esGG ' +¢;(GG 'Y — (GG V]G (80)

where

8
€ :Zldmcmn (}’l: 1727“'38) (81)

The modal matrix P does not appear in the most right-hand side of identity Eq. (80). Employing Eq.
(80), then expressions for rotation of the rigid line inclusion (Egs. (61), (62a) and (62b)), distribution of
stress fields, strain fields and electric fields on the interface (Eqgs. (68) and (70)), jumps in displacements and
electric potential (Eq. (71)) will also not contain the modal matrix P. Real form solutions for these physical
quantities are then obtained.

6. Unification of various interface defects

In this section, we will treat various forms of interface defects within a unified framework. Since the fact
that some physical quantities are continuous across these defects, then the component functions in h(z)
associated with these continuous physical quantities will be zero. As a result, h(z) can be expressed as
follows:

h(z) = Eh(z) (82)

where the real matrix E will be determined by various specific interface defects and H(z) satisfies the
following Hilbert problem

G h+(x)+G h x)=g |x|<a (83)
h*(x) —h (x) =0 |x| > a
where
G'=E'G'E, g=Eg (84)

Apparently G ! is also Hermitian, but its dimension will be lower than that of G™'. In view of Eq. (83), the
stress singularities for the interface defect shall satisfy the following eigenvalue problem

T*l e~
(G +&™GHv=0 (85)

In the following we will discuss various possible forms of interface defects. First the following eight
vectors are defined

~

m=[1 00020000 m=[012020020 0 0]
3:[001OOOOO]Tm4_[OOOIOOOO]T (86)
ms=[0 0 0 0 10 0 0] m=[0 00001 0 0]
m=[1 000001 0] m=[00002000 1]
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e [—a,a] is a conducting inclusion, and the upper debonded side is also conducting
E = [m1 m, m; ms Mg Immy mg] (87)

In this case G~ is a 7 x 7 Hermitian matrix, and there are seven stress singularities, one of which is
—1/2.
e [—a,d] is an insulating inclusion, and the upper debonded part is also insulating

E:[ml my m; my ms Mg m7] (88)

In this case G~ is a 7 x 7 Hermitian matrix, and there are seven stress singularities, one of which is
—1/2.

e [—a,a] is a conducting inclusion, and the upper debonded conducting part is in smooth contact with the
inclusion

E= [ml m; ms Mg Iy mg] (89)

In this case G~ is a 6 x 6 Hermitian matrix, and there are six stress singularities.
e [—a,a] is an insulating inclusion, and the upper debonded insulating part is in smooth contact with the
inclusion

E= [m1 m; my m; INg m7] (90)

In this case G~ is a 6 x 6 Hermitian matrix, and there are six stress singularities.
[—a,a] is a traction-free crack, and its upper surface is insulating while its lower surface is conducting

E = [m1 m, ms; Iy mg] (91)

In this case G™' is a 5 x 5 Hermitian matrix, and there are five stress singularities, one of which is —1 /2.
This model can be applied to analyze an interface crack with its two tips just lodged at the embedded
compliant electrode edges. Recently, Ru et al. (1998) have examined interfacial cracking in electrostrictive
multilayer systems. Similar issues for piezoelectric multilayer materials remain to be investigated. We notice
that most recently, Ru (2000a) studied interface cracks between the embedded electrode layer and piezo-
electric ceramic. In his research, the compliant electrode layer is assumed to be embedded at the entire
interface. He stated that the resulting non-trivial mixed boundary value problem does not admit a general
closed-form solution, and he only obtained an exact elementary solution for a special case in which the two
piezoelectric half-planes are poled in opposite directions perpendicular to the electrode layer. Contrary to
his statement, we can still obtain a general closed-form solution for this mixed boundary value problem. We
can write the resulting 5 x 5 Hermitian matrix G ! defined by Eq. (91) and the 5 x 1 jump function vector
h(z) into the following partitioned form

G = [Y“ Y”] h(z) = {Q@] (92)

Y, Yo

where Y is a 4 x 4 Hermitian matrix, Y, is a 4 x 1 vector, Yy, is a real quantity scalar, Q(z) is a 4 x 1
function vector. Then the boundary conditions on the interface crack can be expressed as follows

K*’ H [?f&)] i [s;—((f))} ‘i[%c] | <a (93)

Here the last row in the above equation expresses the conditions E(12> = 0 on the defect. Due to the fact
that Eiz) = ( establishes along the lower side of the entire real axis, then it follows from Eq. (93) that

Y Y
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Y 0@E) Im@z) >0
Y
s =4 = (94)
—72Q(z) Im(z) <0
A substitution of Eq. (94) into Eq. (93) will result in a standard Hilbert condition for £(z) on the interval

|x| < a as follows:
Gl (M) + GO (x) =it | <a (95)

here the 4 x 4 Hermitian matrix (N};l is defined by

~ Y, Y
Gl'l=Y,-——-12 (96)
»
e [—a,a] is an insulating crack
E= [ml m, mj m4] (97)
In this case G ' = M_ ' is a 4 x 4 Hermitian matrix. There are four stress singularities, and the resulting
singularities are identical to the results obtained by Kuo and Barnett (1991), Suo et al. (1992).
® [—a,a] is a conducting crack
E= [m1 m, mj mg] (98)
In this case G~ is a 4 x 4 Hermitian matrix, and there are four stress singularities.
e [—a,da] is an ideally bonded conducting inclusion
E=[ms mg m; mg] (99)
In this case G' = —M*"! is a 4 x 4 Hermitian matrix. There are four stress singularities, and the
resulting singularities are identical to the results obtained by Deng and Meguid (1998).
e [—a,a] is an ideally bonded insulating inclusion
E= [m4 ms Mg m7] (100)
In this case G is a 4 x 4 Hermitian matrix, and there are four stress singularities.
e [—a,da] is a permeable crack
E = [ml m, m3] (101)

In this case G ' isa 3 x 3 Hermitian matrix, and there are three stress singularities, one of which is —1/2.
e [—a,da] is a closed crack with its two surfaces in smooth contact with each other

In this case G™' is a 2 x 2 Hermitian matrix, and there are two stress singularities. When the in-plane
deformations and out-of-plane deformations are decoupled, then G~ will be a 2 x 2 diagonal real
matrix and as a result both the two stress singularities will be —1/2.

e [—a,a] is a compliant metal electrode layer (Ru, 2000b)

E =ms (103)

In this case G~ is the fourth diagonal element of the 4 x 4 Hermitian matrix —M*~! and in addition
shall be a real scalar, then there is only one stress singularity —1/2. In the analysis performed by Ru
(2000b), he did not point out explicitly that the singularity should be —1/2 for general piezoelectric
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bimaterials since (may be) he did not notice the Hermitian property of M*~'. He only pointed out the
—1/2 singularity in the discussion for two special cases.

We can conceive many other interface boundary condition combinations and they will not be listed here
for brevity. If the modified Stroh formalism is employed, then more boundary conditions can be arrived at.
In summary, the above analysis demonstrates that stress singularities for various forms of interface defects
discussed in this section can be obtained from various condensed matrices G™' (or G, ') of G' (from 7 x 7
matrix to a real scalar). After the stress singularity 6 and its corresponding eigenvector v are determined,
then the Hilbert problem Eq. (83) can be solved using the methodology presented in Section 3 and con-
sequently analytical solutions for these defects can be obtained.

7. The influence of material orientation

In this section’s discussions, we will assume that both the two piezoelectric materials are rotated in
counterclock direction by a common angle 6 about the x;-axis. First, we define the following orthogonal
transformation matrix Q (QQ" =1I)

(¥ 0
Q= 0 ¥ (104a)
[ cos@ sin0 0 0
—sinf cosf 0 O
Y= 0 0 1 0 (104b)
| 0 0 0 1
In the new coordinate system the following relationships will hold
A*"=¥YA, B'=V¥B (105a)
S*=¥S¥', H' =¥YHY', L'=WYLY’ (105b)
G '=0G6'Q", G =QGQ (105¢)

Observing the eigenvalue problem Eq. (36), it can be readily proved that stress singularity ¢ will be
invariant in the new coordinate system, a conclusion having been similarly drawn for purely anisotropic
elastic bimaterials by Ting (1986); while the modal matrix will change in the following way

P = QP (106)
In the new coordinate system, the orthogonal relationship Eq. (51) still holds in view of Eqgs. (105c) and

(106), while in the new coordinate system the rotation angle w* of the line inclusion about the x;-axis can be
expressed as follows:

M
M 1
@ n; ( 07)
where
nt = q QP(05(1 4+ 6,)))(I— A)'AT' TP QT [Zﬁo] (108a)
1

ny = q"QP((35(1+ 85)) (1 — A)"'A; TP Qg (108b)



Xu Wang, Y.-p. Shen | International Journal of Solids and Structures 39 (2002) 1591-1619 1609

In the new coordinate system, the stress fields, strain fields and electric fields on the ideally bonded part
of the interface are distributed as follows:

w, = 2iQRe{G " }P{T — X(x)((x + (1 + 255)a)) }(I — A) AT IP"Q g" x| > a (109)

where g* is similarly defined by Eq. (35¢) with w replaced by w*. R
In the new coordinate system, the following densities of dislocations and electric potential dislocations b*

as well as line loads and line charges f* are continuously distributed on the line inclusion |x| < a

[lf’*} = —QPX" (x)({(x+ (1 + 25/;)a>>(A1A)71JPHQTg* x| < a (110)
In the new coordinate system, closed form expression for jump in generalized displacement vector
AU" = U] — U; and jump in generalized stress function vector A®@* = @} — @] on |x| < a can be obtained

as

AU"
AD*

} = (x* — )QPX (x)(AA) T IPIQ g x| < a (111)

As for the various interface defects discussed in Section 6, we find that the stress singularities for three
cases will change under rotation about the x;-axis. Namely,

1. [—a,a] is a conducting inclusion, and the upper debonded conducting part is in smooth contact with the
line inclusion;

2. [—a,a] is an insulating inclusion, and the upper debonded insulating part is in smooth contact with the
line inclusion;

3. [—a,a] is a closed crack with its two surfaces in smooth contact with each other.

The stress singularities for the rest of the cases will be invariant under rotation of coordinate system
about the x;-axis. Apparently, when the two materials are rotated by different angles, the stress singularities
for all of the interface defects will change.

8. Results and discussions

In this section several illustrative numerical examples will be presented to portray the theoretical results
obtained in the previously several sections. During the calculations, we utilize material combinations of
PZT-4, PZT-5H, Zn and SiC, of which the constitutive constants are listed in Table 1. Among the four
materials, PZT-4 and PZT-5H are two piezoelectric materials while Zn and SiC (Homulka and Keer, 1995)
are two non-piezoelectric materials.

8.1. Interface stress singularities

Table 2 presents stress singularities for the case in which an insulating crack is formed on the upper side
of a conducting interface inclusion, J,, are two out-of-plane stress singularities. From the last four rows in
the Table, we find that except the two additional electric field singularities ;4 = —0.5 £ 0.25, all the rest six
singularities are the same as those obtained by Homulka and Keer (1995) up to the sixth and seventh digit
after the point. This verifies from one aspect the correctness of the explicit solution for stress singularities
obtained in this paper. We can also find that all the stress singularities will be non-oscillatory real power
type for the case when the debonded inclusion is embedded in a homogenecous transversely isotropic
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Table 1

The constitutive constants for the four materials
No. Material Cy Cia Ci3 Cys Cu
1 PZT-4 140.20 78.92 75.65 115.77 25.25
2 PZT-5H 126.00 55.00 53.00 117.00 35.30
3 Zn 161.00 34.20 50.10 61.00 38.30
4 SiC 479.00 97.80 55.30 521.40 148.40

€31 €33 €ls én €33

1 PZT-4 —5.2677 15.4455 12.0000 0.6359 0.5523
2 PZT-5H —6.5000 23.3000 17.0000 1.5100 1.3000
3 Zn 0 0 0 &o &
4 SiC 0 0 0 & &

Note: In the above table, unit for elastic constants is GPa; unit for piezoelectric constants is C/m?; unit for dielectric constants is 1073
C/Vm. g = 8.85 x 10712 C/Vm is the dielectric constant for vacuum and is used as dielectric constant for Zn and SiC.

Table 2
Stress singularities for the case in which an insulating crack is formed on the upper side of an interface conducting inclusion
O12 034 ds6 078

1+1 —0.5+0.25 —0.5+0.190248 —0.5+0.25 —0.5+0.309752
242 —-0.5+0.25 —0.5 £ 0.230555 —-0.5+0.25 —0.5 +0.269445
142 —0.5+0.230857 —0.5 £0.147590 —0.5+0.258062 + 0.0086911 —0.5 £ 0.258062 — 0.008691i
241 —0.54+0.269143 —0.5+0.331843 —0.54+0.251649 + 0.023505i —0.5+0.251649 — 0.0235051
1+3 —0.5+0.205098 —0.5 £ 0.489665 —0.5+0.270751 + 0.045913i —0.5+£0.270751 — 0.045913i
341 —0.540.294902 —0.5+0.009810 —0.5 £ 0.249673 + 0.039852i —0.5 £+ 0.249673 — 0.039852i
1+4 —0.5+£0.122947 —0.5 £ 0.489666 —0.5+£0.155135 + 0.1067241 —0.5+£0.155135 — 0.106724i
441 —0.5+0.377053 —0.5+0.011334 —0.5+0.357307 + 0.023255i1 —0.5+0.357307 — 0.0232551
243 —0.5+0.223799 —0.5 +0.492919 —0.5£0.277021 + 0.0442661 —0.5+£0.277021 — 0.044266i
342 —0.5+0.276201 —0.5 £+ 0.006692 —0.5+0.236710 + 0.052862i —0.5+0.236710 — 0.052862i
244 —0.5+0.136917 —0.5£0.492919 —0.5+0.161177 + 0.10804 11 —0.5+£0.161177 — 0.1080411
442 —0.5+0.363083 —0.5+0.007475 —0.5+0.347651 + 0.028191i —0.5+0.347651 — 0.028191i
343 —-0.5+0.25 —-0.5+0.25 —0.5+0.25 + 0.047448948441 —0.5£0.25 — 0.04744894844i
4+4 —-0.5+0.25 —-0.5+0.25 —0.5+0.25+ 0.066219475131 —0.5+0.25 - 0.06621947513i
3+4 —0.5+0.157924 —0.5+0.25 —0.5 £0.135268 + 0.093166523051 —0.5+£0.135268 — 0.09316652305i
4+3 —0.5+0.342076 —-0.5+0.25 —0.5+0.363320 + 0.010469107421 —0.5+0.363320 — 0.01046910742i

Note: the number before the sign “+” represents the upper half plane, while the number behind the sign “+” represents the lower half
plane.

piezoelectric material, and these singularities belong to Category 4 singularities discussed in Section 3.
When the inclusion is embedded in dissimilar media, we find that except that the two out-of-plane sin-
gularities and two in-plane singularities are non-oscillatory, all the rest four in-plane singularities will be
oscillatory non-square root ones, and this kind of singularities belongs to Category 5 singularities discussed
in Section 3.

As a comparison, Table 3 presents stress singularities for the case in which a conducting crack is formed
on the upper side of an insulating inclusion. These singularities are obtained by employing the modified
Stroh formalism in Section 2. We can find that the two out-of-plane singularities are the same as those in
Table 2. We can observe that even when the inclusion is embedded in a homogeneous piezoelectric media,
there still exist oscillatory singularities and the eight singularities belong to Category 5 singularities dis-
cussed in Section 3. When the inclusion is embedded in dissimilar media, the eight singularities still belong
to Category 5 singularities discussed in Section 3. But in this case the degree of oscillation for the four
oscillatory singularities will be more serious than that in Table 2.
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Table 3
Stress singularities for the case in which a conducting crack is formed on the upper side of an interface insulating inclusion
012 034 056 078

1+1 —-0.54+0.25 —-0.54+0.25 —0.5+0.25 4+ 0.112534i —0.5+£0.25 - 0.112534i
242 —-0.5+0.25 —-0.5+0.25 —0.5+£0.25 4+ 0.105342i —0.5+0.25 — 0.105342i
1+2 —0.5+0.230857 —0.5+0.255901 —0.54+0.261026 + 0.0856851 —0.5+0.261026 — 0.085685i1
2+1 —0.5+0.269143 —0.5+£0.253583 —0.5£0.231965 + 0.112293i —0.5+0.231965 — 0.112293i
1+3 —0.5+0.205098 —0.5+0.009274 —0.5+0.252177 + 0.0555661 —0.5+£0.252177 — 0.055566i
3+1 —0.5 £0.294902 —0.5 £ 0.489665 —0.5+£0.227809 + 0.063143i —0.5+0.227809 — 0.063143i
1+4 —0.5+0.122947 —0.5+0.007230 —0.5+0.122560 + 0.128473i —0.540.122560 — 0.128473i
4+1 —0.5+£0.377053 —0.5 £ 0.489671 —0.5 £0.344777 + 0.0290441 —0.5+0.344777 — 0.0290441
243 —0.5+0.223799 —0.5 £ 0.006555 —0.5+0.264712 + 0.0520501 —0.540.264712 — 0.0520501
342 —-0.5+0.276201 —0.5+0.492919 —0.5+0.220890 + 0.067830i —0.5 +0.220890 — 0.0678301
2+4 —0.5+0.136917 —0.5+0.005821 —0.5+0.139435 + 0.1232301 —0.5+0.139435 — 0.1232301
442 —0.5 £0.363083 —0.5 £0.492920 —0.5£0.338598 + 0.0321751 —0.54+0.338598 — 0.032175i

Note: the number before the sign “+” represents the upper half plane, while the number behind the sign “+” represents the lower half
plane.

Table 4 lists all the seven singularities for the case in which the upper debonded side of a conducting
inclusion is also conducting. The two out-of-plane singularities are still invariant and there exists a common
in-plane singularity —0.5, the rest four in-plane singularities are oscillatory non-square root singularities.

In all the above three cases there exist oscillatory singularities and all the singularities are verified nu-
merically to be invariant under rotations about the x;-axis. The existence of the oscillatory singularities
means that the physical quantities such as stresses, strains and electric fields possess oscillatory properties
and the physically unacceptable interpenetration of crack surfaces (Ting, 1986). Table 5 presents all the six
singularities for the case in which the upper debonded conducting part of the conducting inclusion is in
smooth contact with the conducting inclusion. We can find that two out-of-plane singularities still remain
unchanged. Except for the case in which the two media are two identical materials, the four in-plane
singularities will change under rotations of the coordinate system about the x;-axis. When the rotation
angle is 0 = 0°, we find that there are two common in-plane singularities —0.5 and the rest two in-plane
singularities are non-oscillatory real power type; when the rotation angle is 0 = 45°, we can observe that
there still exist oscillatory singularities for 1+ 4 combination (PZT-4/SiC) and 2+ 4 combination

Table 4
Stress singularities for the case in which a conducting crack is formed on the upper side of an interface conducting inclusion
012 03 045 067

1+1 —-0.5+0.25 —0.5 —0.5+£0.25 4+ 0.0221061 —0.5+0.25 —0.022106i
242 —-0.5+0.25 -0.5 —0.5+0.25 4 0.041768i —0.5+0.25 — 0.041768i
1+2 —0.5+0.230857 -0.5 —0.5£0.235001 + 0.034912i —0.5+£0.235001 — 0.034912i
2+1 —0.5+£0.269143 -0.5 —0.5+0.263648 + 0.029118i —0.5+0.263648 — 0.029118i
1+3 —0.5+0.205098 -0.5 —0.5£0.252159 + 0.0555371 —0.5+£0.252159 — 0.0555371
341 —0.5 +0.294902 -0.5 —0.5 £ 0.249670 + 0.03983668i —0.5 £ 0.249670 — 0.03983668i
1+4 —0.5+0.122947 -0.5 —0.5+£0.122419 + 0.128441i —0.5+£0.122419 — 0.128441i
4+1 —0.5+£0.377053 -0.5 —0.5+0.357318 + 0.0232451 —0.5+0.357318 — 0.023245i
243 —0.5+0.223799 -0.5 —0.5 £0.264708 + 0.05204 11 —0.5 £0.264708 — 0.052041i
342 —0.5+£0.276201 -0.5 —0.5+0.236708 + 0.0528551 —0.5+£0.236708 — 0.052855i
244 —0.5+0.136917 -0.5 —0.5+0.139394 + 0.123212i —0.5+0.139394 — 0.123212i
442 —0.5+0.363083 -0.5 —0.5+0.347655 + 0.028187i —0.5 £ 0.347655 — 0.028187i

Note: the number before the sign “+”° represents the upper half plane, while the number behind the sign “+” represents the lower half

plane.
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Table 5

Stress singularities for the case in which the upper debonded conducting part of the conducting inclusion is in smooth contact with the
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conducting inclusion

012 034 (0°) 034 (45°) 956 (0°) 56 (45°)

1+1 —0.54+0.25 -0.5 -0.5 —-0.5+0.25 —0.54+0.25

242 —-0.5+£0.25 -0.5 -0.5 —-0.5+0.25 —-0.5+£0.25

142 —0.5 +0.230857 -0.5 —0.5 +0.005869 —0.5 +0.234481 —0.5+0.232342

2+1 —0.5+0.269143 -0.5 —0.5+0.004467 —0.5+0.263644 —0.5+0.265459

1+3 —0.5 +0.205098 -0.5 —0.5 +0.096964 —0.5 +0.254028 —0.5+0.240116

3+1 —0.5+0.294902 -0.5 —0.5+0.061871 —0.5+0.288852 —0.5+0.261124

1+4 —0.5+0.122947 -0.5 —0.5+0.103254 + 0.1066301 —0.5 +0.130965 —0.5+0.103254 — 0.1066301
4+1 —0.5+0.377053 -0.5 —0.5+0.055574 —0.5+0.371095 —0.5+0.358564

243 —0.5+0.223799 -0.5 —0.5+0.070192 —0.5+0.258972 —0.5+£0.260357

342 —0.54+0.276201 -0.5 —0.5+0.054164 —0.5+0.268974 —0.5 £0.242948

2+4 —0.5+0.136917 -0.5 —0.5 £ 0.103600 + 0.0880511 —0.5 +0.139809 —0.5+0.103600 — 0.0880511
4+2 —0.5+0.363083 -0.5 —0.5+0.048233 —0.5+0.359847 —0.5 £ 0.348991

Note: the number before the sign “+ represents the upper half plane, while the number behind the sign “+” represents the lower half
plane.

(PZT-5H/SiC). In summary, we find that in this model the singularities are rarely oscillatory and the model
can be taken as a plausible model for interface defects.

Table 6 presents all the five singularities for the case in which [—a, d] is a traction-free crack whose upper
surface is insulating while whose lower surface is conducting. We can find that there exists a common out-
of-plane singularity —0.5, among the four in-plane singularities two singularities are oscillatory square root
ones and the other two singularities are non-oscillatory real power type.

Table 7 presents all the four singularities for the two cases in which the two surfaces of the crack are
simultaneously insulating or conducting. We can find that in both the two cases there exist a common out-
of-plane singularity —0.5 and a common in-plane singularity —0.5, for an insulating crack the rest two
in-plane singularities can be oscillatory or non-oscillatory; while for a conducting crack all the rest two in-
plane singularities are oscillatory square root singularities. Table 8 presents all the four singularities for
ideally bonded conducting or insulating rigid line inclusion. We can find that for the two cases there also
exist a common out-of-plane singularity —0.5 and a common in-plane singularity —0.5, but contrary to the
two crack cases the rest two in-plane singularities for a conducting inclusion may be oscillatory or non-

Table 6
Stress singularities for a crack whose upper surface is insulating while whose lower surface is conducting
01 023 045

1+1 -0.5 -0.5 —-0.5+0.5
242 -0.5 -0.5 —-0.5+0.5
1+2 -0.5 —0.5+0.200481 —0.5+0.018157i
241 -0.5 —0.5+0.304729 —0.5+0.0164441
1+3 -0.5 —0.5+0.490478 —0.5 £+ 0.005872i
3+1 -0.5 —0.5 +0.002223 —0.5+0.1083091
1+4 -0.5 —0.5+0.489920 —0.5 4 0.080988i
441 -0.5 —0.5 +0.000932 —0.5+0.175938i
243 -0.5 —0.5+0.493348 —0.5 £ 0.0046571
342 -0.5 —0.5 £+ 0.000988 —0.5+0.0877791
2+4 -0.5 —0.5+0.493061 —0.5+0.083657i

442 —0.5 —0.54+0.001939 —0.5+0.154824i
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Stress singularities for the two cases in which the two surfaces of the crack are simultaneously insulating or conducting
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d 02 034 (insulating) 03, (conducting)

142 —0.5 -0.5 —0.5+0.036364 —0.5 4+ 0.018622i

143 —0.5 —0.5 —0.5 £ 0.005188i —0.5+0.108707i

1+4 —0.5 -0.5 —0.5 £ 0.080859i —0.54+0.176223i

2+3 —0.5 —0.5 —0.5 £ 0.0044571 —0.5 +0.088023i

2+4 —0.5 -0.5 —0.5+0.083623i —0.5 £ 0.154963i
Table 8

Stress singularities for an ideally bonded conducting or insulating rigid line inclusion

0 0y 034 (conducting) 03, (insulating)
1+2 -0.5 —0.5 —0.5 4+ 0.024350i —0.5 4 0.054578i
1+3 -0.5 —0.5 —0.5£0.119060 —0.5 4+ 0.038248i
1+4 -0.5 -0.5 —0.540.021875 —0.5 £ 0.074543i
243 -0.5 -0.5 —0.5 £ 0.095665 —0.5 4+ 0.048087i
244 -0.5 -0.5 —0.5£0.009191i —0.5 4+ 0.068080i

oscillatory; while all the rest two in-plane singularities for an insulating inclusion will be oscillatory square
root singularities.

Table 9 presents all the three singularities for the case in which a permeable crack lies on [—a, a]. We can
find that there is a common out-of-plane singularity —0.5 and the rest two in-plane singularities are
oscillatory square root singularities. As for the closed crack whose two surfaces are in smooth contact with
each other, since in the present discussion the out-of-plane deformations are decoupled from the in-plane
deformations, then both the two singularities will be —0.5. The —0.5 singularities are also verified by our
numerical calculation.

The present numerical calculations verify that all the stress singularities listed from Tables 6 to 9 will be
invariant under rotations about the x;-axis.

8.2. Rotation of the conducting rigid line inclusion, distribution of tractions on the interface, surface opening
displacements and electric potential difference on the debonded inclusion

Since material orientations, combinations of the two materials, external loading conditions, etc will
result in an infinite number of possible configurations, here we will only present numerical results for typical
configurations. The upper half plane is chosen to be the piezoelectric material PZT-4 while the lower half
plane is chosen to be the non-piezoelectric material Zn. To guarantee the contact zones are sufficiently
small, the two-phase composite system is subject to remote uniform loading t° = [0 ¢35 0 O]T, e =0.

Table 9
Stress singularities for a permeable crack
o 023
142 —0.5 —0.5+0.0171561
143 —-0.5 —0.5 £ 0.005846i
1+4 —0.5 —0.5 £ 0.080932i
2+3 —-0.5 —0.5 £+ 0.004649i

2+4 -0.5 —0.5 £ 0.0836401
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Angle of rotation

_5 1 i 1 L 1 Il L 1
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Fig. 2. Variations of normalized rotation angle @ = 10*655w under different rotations of the two materials about the x;-axis.

When there is no rotation of the coordinate system about the x3-axis, the rigid line inclusion will also not
rotate about the x;-axis. Fig. 2 depicts the variations of normalized rotation angle @ = 10055 under
different rotations of the two materials about the x;-axis for three configurations. (a: both the materials are
rotated by a common angle; b: the upper PZT-4 is rotated while the lower Zn is fixed; ¢: the upper PZT-4 is
fixed while the lower Zn is rotated). It can be observed from this figure that when both the two materials
are rotated by a common angle, the variations of w are most prominent and the maximum magnitude
of rotation angle @, = 4.3829 takes place when 6 = 40.275° and 6 = 139.725°; when the upper PZT-4
is rotated while the lower Zn is fixed, the variations of w are most insignificant with a maximum magnitude
of rotation angle @, = 0.4095; when the upper PZT-4 is fixed while the lower Zn is rotated, the variations
of w lie between the above two cases with a maximum magnitude of rotation angle ., = 4.0309.
Observing the material constants listed in Table 1, we find that the anisotropic effect of piezoelectric
material PZT-4 is weaker than that of the non-piezoelectric material Zn and consequently when only PZT-4
is rotated the variations of w will be minimal, while when Zn is rotated the variations of w will be sig-
nificant.

Figs. 3 and 4 show respectively the normalized shear stress o1,/¢55 and the normalized normal stress
o /05 along the interface y = 0~. Concrete calculations demonstrate that the rotations about the x;-axis
will exert minimal influence on the stress distributions, then only stress distributions for the case in which
both the two materials are fixed are shown in the two figures. One can observe from Fig. 3 that except at the
regions very near the two tips of the debonded inclusion, the magnitude of shear stress on the rest of the
inclusion is very small; while the magnitude of shear stress increases abruptly when approaching the two
tips of the inclusion. We can observe from Fig. 4 that tensile stress acting on the lower surface of the in-
clusion is concentrated in the middle part of the inclusion, while compressive stress is distributed in the
regions nears the two tips of the inclusion so as to guarantee balance of force acting on the inclusion in the y
direction. The normal stress at the ideally bonded part of the interface |x| > a is always greater than the
remote tension o5;.
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Fig. 3. The normalized shear stress o,/055 along the interface y = 0.
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Fig. 4. The normalized normal stress 02, /0655 along the interface y = 0.

Figs. 5 and 6 show respectively the horizontal opening displacement Au;/(ag35) and vertical opening
displacement Au,/(ag55) on the debonded inclusion as well as their variations under different rotations of
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Fig. 5. Horizontal opening displacement Au; /(ac35) on the debonded inclusion and its variations under different rotations about the
x3-axis (@) —0°; (O) —45° (X) —60°; (4) —90°% (%) —120°; (V) —135°).

25+

Vertical Opening Displacemennt
P
T

05}
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Fig. 6. Vertical opening displacement Au,/(ac5;) on the debonded inclusion and its variations under different rotations about the
x3-axis (@) —0°% (O) —45°% (X) —60°; (4) —90°; (%) —120°; (V) —135°).
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the coordinate system about the x;-axis. We can observe from Fig. 5 that the upper debonded part has a
tendency to move toward the y-axis. The maximum horizontal opening displacement (6.0874 x 10~!2)
occurs when the coordinate system is rotated by 45°; the horizontal opening displacements for the two cases
when the coordinate system is rotated by 0° and 90° are identical. A careful checking of the data reveals
that Au, < 0 can occur near the two tips of the debonded inclusion, which is due to the physically unac-
ceptable interpenetration phenomenon of the surfaces caused by the oscillatory stress singularities. For-
tunately the interpenetration zones are extremely small (so small that it can not be distinguishable in Fig. 6)
and can be ignored under the remote tensile loads. The maximum vertical opening displacement (2.7728 x
10~'") occurs when the coordinate system is rotated by 0°; the minimum vertical opening displacement
(2.5020 x 107! takes place when the coordinate system is rotated by 90°.

Fig. 7 shows the electric potential difference on the debonded inclusion and its variations under different
rotations of the coordinate system about the x;-axis. In comparison with the previously illustrated physical
quantities, the material orientation will exert the most prominent influence on the distribution of electric
potential difference. We can find that when the rotation angle is increased from 0°, the curves of electric
potential difference will be compressed and simultaneously the compressed curves will also rotate in the
counterclock direction.

Fig. 8 shows vertical opening displacement Au,/(aag(3) on the debonded inclusion under remote shear
loads t = [a33 0 0 0], e = 0. One can observe that under this kind of external loads, Au, < 0 can
occur on the left half part of the inclusion x € [—a,0]. Adopting the contact zone model may be more
reasonable under this kind of loads, but this model will not be further pursued in the present paper.

We have also verified numerically the correctness of the real form solutions presented in Section 5. Since
the eigenvalue problem Eq. (36) can be avoided, the accuracy of the real form solution is even better during
numerical calculations.
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Fig. 7. Electric potential difference on the debonded inclusion and its variations under different rotations about the x;-axis ((@) —0°;
(O) —45°% (X) =607 (4) —90° (%) —120°; (V) —135°).
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Fig. 8. Vertical opening displacement Au,/(ac53) on the debonded inclusion under remote shear loads t5° = [63 0 0 0] " e =0.

9. Concluding remarks

The standard Stroh formalism is employed to solve a kind of mixed boundary value problems at the
interface of dissimilar anisotropic piezoelectric bimaterials. Since the Hermitian property of G™' is fully
exploited, not only the explicit solution for stress singularities can be obtained but also inversion of the
modal matrix P can be circumvented during the decoupling process for the coupled Hilbert problem of
vector form. We find that stress singularities for any kind of interface defects can be obtained from G,
and all of the existing models for interface defects, e.g., insulating crack (Suo et al., 1992), conducting rigid
line inclusion (Deng and Meguid, 1998), electrode—ceramic interfacial crack (Ru, 2000a), compliant metal
electrode layer (Ru, 2000b), and permeable crack, etc can be treated as special cases discussed in this paper.
The numerical results verify the correctness of the theoretical analyses. Meanwhile, the discussions carried
out in this paper can be taken as complement to the works of Ting (1986) and Homulka and Keer (1995)
when considering electromechanical coupling effects. It is not difficult to apply the methodology presented
here to investigate the case when there exist many collinear interface debonded conducting rigid line in-
clusions and when the composite system is subject to other kinds of thermal-mechanical—electrical loads,
e.g., line force and line charge, dislocation and electric-potential dislocation, thermal loads, etc. The success
in obtaining the exact solution is due to the powerful tool offered by Stroh formalism.
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